Mast Joshua D, Tomalty Katharine M H, Vogel Hannes, Clandinin Thomas R
Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA 94305, USA.
Development. 2008 Aug;135(15):2669-79. doi: 10.1242/dev.020644. Epub 2008 Jul 3.
Mitochondrial dysfunction is a hallmark of many neurodegenerative diseases, yet its precise role in disease pathology remains unclear. To examine this link directly, we subtly perturbed electron transport chain function in the Drosophila retina, creating a model of Leigh Syndrome, an early-onset neurodegenerative disorder. Using mutations that affect mitochondrial complex II, we demonstrate that mild disruptions of mitochondrial function have no effect on the initial stages of photoreceptor development, but cause degeneration of their synapses and cell bodies in late pupal and adult animals. In this model, synapse loss is caused by reactive oxygen species (ROS) production, not energy depletion, as ATP levels are normal in mutant photoreceptors, and both pharmacological and targeted genetic manipulations that reduce ROS levels prevent synapse degeneration. Intriguingly, these manipulations of ROS uncouple synaptic effects from degenerative changes in the cell body, suggesting that mitochondrial dysfunction activates two genetically separable processes, one that induces morphological changes in the cell body, and another that causes synapse loss. Finally, by blocking mitochondrial trafficking into the axon using a mutation affecting a mitochondrial transport complex, we find that ROS action restricted to the cell body is sufficient to cause synaptic degeneration, demonstrating that ROS need not act locally at the synapse. Thus, alterations in electron transport chain function explain many of the neurodegenerative changes seen in both early- and late-onset disorders.
线粒体功能障碍是许多神经退行性疾病的一个标志,但其在疾病病理中的精确作用仍不清楚。为了直接研究这种联系,我们在果蝇视网膜中轻微干扰电子传递链功能,创建了一种Leigh综合征模型,这是一种早发性神经退行性疾病。利用影响线粒体复合物II的突变,我们证明线粒体功能的轻度破坏对光感受器发育的初始阶段没有影响,但会导致其在蛹后期和成年动物中的突触和细胞体退化。在这个模型中,突触丧失是由活性氧(ROS)产生引起的,而不是能量消耗,因为突变光感受器中的ATP水平正常,并且降低ROS水平的药理学和靶向基因操作都能防止突触退化。有趣的是,这些对ROS的操作将突触效应与细胞体的退行性变化解耦,表明线粒体功能障碍激活了两个基因上可分离的过程,一个诱导细胞体的形态变化,另一个导致突触丧失。最后,通过使用影响线粒体运输复合物的突变来阻断线粒体向轴突的运输,我们发现仅限于细胞体的ROS作用足以导致突触退化,这表明ROS不必在突触处局部起作用。因此,电子传递链功能的改变解释了在早发性和晚发性疾病中看到的许多神经退行性变化。