Suppr超能文献

基因编码的氧化还原传感器可识别 ROS 在退行性和线粒体疾病发病机制中的作用。

Genetically encoded redox sensor identifies the role of ROS in degenerative and mitochondrial disease pathogenesis.

机构信息

Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.

出版信息

Neurobiol Dis. 2012 Jan;45(1):362-8. doi: 10.1016/j.nbd.2011.08.022. Epub 2011 Aug 25.

Abstract

Mitochondrial dysfunction plays an important role in the pathogenesis of neurodegenerative diseases, numerous other disease states and senescence. The ability to monitor reactive oxygen species (ROS) within tissues and over time in animal model systems is of significant research value. Recently, redox-sensitive fluorescent proteins have been developed. Transgenic flies expressing genetically encoded redox-sensitive GFPs (roGFPs) targeted to the mitochondria function as a useful in vivo assay of mitochondrial dysfunction and ROS. We have generated transgenic flies expressing a mitochondrial-targeted roGFP2, demonstrated its responsiveness to redox changes in cultured cells and in vivo and utilized this protein to discover elevated ROS as a contributor to pathogenesis in a characterized neurodegeneration mutant and in a model of mitochondrial encephalomyopathy. These studies identify the role of ROS in pathogenesis associated with mitochondrial disease and demonstrate the utility of genetically encoded redox sensors in Drosophila.

摘要

线粒体功能障碍在神经退行性疾病、许多其他疾病状态和衰老的发病机制中起着重要作用。能够监测组织内和动物模型系统中随时间推移的活性氧(ROS)具有重要的研究价值。最近,已经开发出了氧化还原敏感的荧光蛋白。表达遗传编码氧化还原敏感 GFP(roGFP)的转基因果蝇靶向线粒体,可作为线粒体功能障碍和 ROS 的有用体内测定方法。我们生成了表达线粒体靶向 roGFP2 的转基因果蝇,证明其对培养细胞和体内氧化还原变化的反应性,并利用该蛋白发现 ROS 升高是特征性神经退行性突变体和线粒体脑肌病模型发病机制的一个促成因素。这些研究确定了 ROS 在与线粒体疾病相关的发病机制中的作用,并证明了遗传编码氧化还原传感器在果蝇中的实用性。

相似文献

1
Genetically encoded redox sensor identifies the role of ROS in degenerative and mitochondrial disease pathogenesis.
Neurobiol Dis. 2012 Jan;45(1):362-8. doi: 10.1016/j.nbd.2011.08.022. Epub 2011 Aug 25.
3
Alternative oxidase rescues mitochondria-mediated dopaminergic cell loss in Drosophila.
Hum Mol Genet. 2012 Jun 15;21(12):2698-712. doi: 10.1093/hmg/dds096. Epub 2012 Mar 7.
4
The contribution of mitochondria to common disorders.
Mol Genet Metab. 2003 Sep-Oct;80(1-2):11-26. doi: 10.1016/j.ymgme.2003.08.009.
5
Neurodegeneration as a consequence of failed mitochondrial maintenance.
Acta Neuropathol. 2012 Feb;123(2):157-71. doi: 10.1007/s00401-011-0921-0. Epub 2011 Dec 7.
6
Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
J Neurol Sci. 2005 Jun 15;233(1-2):145-62. doi: 10.1016/j.jns.2005.03.012.
7
Reactive oxygen species and mitochondrial diseases.
Semin Cell Dev Biol. 2001 Dec;12(6):449-57. doi: 10.1006/scdb.2001.0282.
8
A defect in the mitochondrial complex III, but not complex IV, triggers early ROS-dependent damage in defined brain regions.
Hum Mol Genet. 2012 Dec 1;21(23):5066-77. doi: 10.1093/hmg/dds350. Epub 2012 Aug 21.
10
Mitochondrial Redox Sensor for Drosophila Female Germline Stem Cells.
Methods Mol Biol. 2019;1854:13-20. doi: 10.1007/7651_2018_167.

引用本文的文献

2
Promising tools into oxidative stress: A review of non-rodent model organisms.
Redox Biol. 2024 Nov;77:103402. doi: 10.1016/j.redox.2024.103402. Epub 2024 Oct 16.
3
Imaging immunometabolism in live animals.
Immunometabolism (Cobham). 2024 Jul;6(3). doi: 10.1097/IN9.0000000000000044. Epub 2024 Jul 31.
4
Genetically Encoded Fluorescent Redox Indicators for Unveiling Redox Signaling and Oxidative Toxicity.
Chem Res Toxicol. 2021 Aug 16;34(8):1826-1845. doi: 10.1021/acs.chemrestox.1c00149. Epub 2021 Jul 20.
7
In Vivo Imaging with Genetically Encoded Redox Biosensors.
Int J Mol Sci. 2020 Oct 31;21(21):8164. doi: 10.3390/ijms21218164.
8
Neuron Activity Dependent Redox Compartmentation Revealed with a Second Generation Red-Shifted Ratiometric Sensor.
ACS Chem Neurosci. 2020 Sep 2;11(17):2666-2678. doi: 10.1021/acschemneuro.0c00342. Epub 2020 Aug 21.
10
Antioxidant Therapy in Parkinson's Disease: Insights from .
Antioxidants (Basel). 2020 Jan 7;9(1):52. doi: 10.3390/antiox9010052.

本文引用的文献

1
Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1.
Nature. 2010 Dec 2;468(7324):696-700. doi: 10.1038/nature09536. Epub 2010 Nov 10.
2
Hsp70- and Hsp90-mediated proteasomal degradation underlies TPI sugarkill pathogenesis in Drosophila.
Neurobiol Dis. 2010 Dec;40(3):676-83. doi: 10.1016/j.nbd.2010.08.011. Epub 2010 Aug 19.
3
Modeling mitochondrial encephalomyopathy in Drosophila.
Neurobiol Dis. 2010 Oct;40(1):40-5. doi: 10.1016/j.nbd.2010.05.009. Epub 2010 May 21.
4
Mitochondria as a target in treatment.
Environ Mol Mutagen. 2010 Jun;51(5):462-75. doi: 10.1002/em.20554.
5
6
A fluorometer-based method for monitoring oxidation of redox-sensitive GFP (roGFP) during development and extended dark stress.
Physiol Plant. 2010 Apr;138(4):493-502. doi: 10.1111/j.1399-3054.2009.01334.x. Epub 2009 Nov 23.
7
Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactions.
Adv Drug Deliv Rev. 2009 Nov 30;61(14):1375-85. doi: 10.1016/j.addr.2009.06.008. Epub 2009 Aug 27.
8
Sod2 knockdown in the musculature has whole-organism consequences in Drosophila.
Free Radic Biol Med. 2009 Sep 15;47(6):803-13. doi: 10.1016/j.freeradbiomed.2009.06.021. Epub 2009 Jun 21.
10
Mitochondria and reactive oxygen species.
Hypertension. 2009 Jun;53(6):885-92. doi: 10.1161/HYPERTENSIONAHA.109.130054. Epub 2009 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验