Suppr超能文献

触觉物体识别任务中所募集神经网络的分离:张量独立成分分析的互补结果

Dissociation of the neural networks recruited during a haptic object-recognition task: complementary results with a tensorial independent component analysis.

作者信息

Habas C, Cabanis E A

机构信息

Service de NeuroImagerie, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France.

出版信息

AJNR Am J Neuroradiol. 2008 Oct;29(9):1715-21. doi: 10.3174/ajnr.A1191. Epub 2008 Jul 3.

Abstract

BACKGROUND AND PURPOSE

The cerebral and cerebellar networks involved in bimanual object recognition were assessed by blood oxygen level-dependent functional MR imaging by using multivariate model-free analysis, because conventional univariate model-based analysis, such as the general linear model (GLM), does not allow investigation of resting, background, and transiently task-related brain activities.

MATERIALS AND METHODS

Data from 14 healthy right-handed volunteers, scanned while successively performing bilateral finger movements and a bimanual tactile-tactile matching discrimination task were analyzed by using tensor-independent component analysis (TICA), which computes statistically independent spatiotemporal processes (P > .7) thought to reflect specific and distinct anatomofunctional neural networks. These results were compared with the network obtained in a previous study by using the same paradigm based on GLM to evaluate the advantages of TICA.

RESULTS

TICA characterized and distinguished the following: 1) resting-state networks such as the default-mode networks, 2) networks transiently synchronized with the beginning and end of the task, such as temporo-pericentral and temporo-pericentral-occipital networks, and 3) task-related networks such as cerebello-fronto-parietal, cerebello-prefrontocingulo-insular, and cerebello-parietal networks.

CONCLUSION

Bimanual tactile-tactile matching discrimination specifically recruits a complex neural network, which can be dissociated into 3 distinct but cooperative neural subnetworks related to sensorimotor function, salience detection, executive control, and, possibly, sensory expectation. This tripartite network involved in bimanual object recognition could not be demonstrated by GLM. Moreover, TICA allowed monitoring of the temporal succession of the networks recruited during the resting phase, audition of the "go" and "stop" signals, and the tactile discrimination task.

摘要

背景与目的

通过血氧水平依赖性功能磁共振成像,采用多变量无模型分析评估参与双手物体识别的大脑和小脑网络,因为传统的基于单变量模型的分析方法,如一般线性模型(GLM),无法研究静息、背景以及与任务相关的瞬态脑活动。

材料与方法

对14名健康右利手志愿者的数据进行分析,这些志愿者在依次进行双侧手指运动和双手触觉-触觉匹配辨别任务时接受扫描,采用张量独立成分分析(TICA),该分析计算统计独立的时空过程(P>.7),被认为反映特定且不同的解剖功能神经网络。将这些结果与之前一项基于GLM使用相同范式获得的网络进行比较,以评估TICA的优势。

结果

TICA对以下方面进行了特征描述和区分:1)静息状态网络,如默认模式网络;2)与任务开始和结束瞬间同步的网络,如颞-中央周和颞-中央周-枕叶网络;3)与任务相关的网络,如小脑-额-顶叶、小脑-前额扣带回-岛叶和小脑-顶叶网络。

结论

双手触觉-触觉匹配辨别特别招募了一个复杂的神经网络,该网络可分解为3个不同但相互协作的神经子网,分别与感觉运动功能、显著性检测、执行控制以及可能的感觉预期相关。GLM无法证明参与双手物体识别的这个三方网络。此外,TICA允许监测静息期招募的网络的时间顺序、“开始”和“停止”信号的听觉以及触觉辨别任务。

相似文献

4
7
What vs. where in touch: an fMRI study.触觉中的“什么”与“哪里”:一项功能磁共振成像研究
Neuroimage. 2005 Apr 15;25(3):718-26. doi: 10.1016/j.neuroimage.2004.11.044.

本文引用的文献

1
A computational neuroanatomy for motor control.用于运动控制的计算神经解剖学。
Exp Brain Res. 2008 Mar;185(3):359-81. doi: 10.1007/s00221-008-1280-5. Epub 2008 Feb 5.
3
The cerebellum mediates conflict resolution.小脑介导冲突解决。
J Cogn Neurosci. 2007 Dec;19(12):1974-82. doi: 10.1162/jocn.2007.19.12.1974.
6
Volitional control of movement: the physiology of free will.运动的意志控制:自由意志的生理学
Clin Neurophysiol. 2007 Jun;118(6):1179-92. doi: 10.1016/j.clinph.2007.03.019. Epub 2007 Apr 26.
9
Consistent resting-state networks across healthy subjects.健康受试者中一致的静息态网络。
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53. doi: 10.1073/pnas.0601417103. Epub 2006 Aug 31.
10
Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems.自发神经元活动区分人类背侧和腹侧注意系统。
Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10046-51. doi: 10.1073/pnas.0604187103. Epub 2006 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验