Suppr超能文献

在反指令任务期间额眼区活动与扫视启动的关系。

Relation of frontal eye field activity to saccade initiation during a countermanding task.

作者信息

Brown Joshua W, Hanes Doug P, Schall Jeffrey D, Stuphorn Veit

机构信息

Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA.

出版信息

Exp Brain Res. 2008 Sep;190(2):135-51. doi: 10.1007/s00221-008-1455-0. Epub 2008 Jul 5.

Abstract

The countermanding (or stop signal) task probes the control of the initiation of a movement by measuring subjects' ability to withhold a movement in various degrees of preparation in response to an infrequent stop signal. Previous research found that saccades are initiated when the activity of movement-related neurons reaches a threshold, and saccades are withheld if the growth of activity is interrupted. To extend and evaluate this relationship of frontal eye field (FEF) activity to saccade initiation, two new analyses were performed. First, we fit a neurometric function that describes the proportion of trials with a stop signal in which neural activity exceeded a criterion discharge rate as a function of stop signal delay, to the inhibition function that describes the probability of producing a saccade as a function of stop signal delay. The activity of movement-related but not visual neurons provided the best correspondence between neurometric and inhibition functions. Second, we determined the criterion discharge rate that optimally discriminated between the distributions of discharge rates measured on trials when saccades were produced or withheld. Differential activity of movement-related but not visual neurons could distinguish whether a saccade occurred. The threshold discharge rates determined for individual neurons through these two methods agreed. To investigate how reliably movement-related activity predicted movement initiation; the analyses were carried out with samples of activity from increasing numbers of trials from the same or from different neurons. The reliability of both measures of initiation threshold improved with number of trials and neurons to an asymptote of between 10 and 20 movement-related neurons. Combining the activity of visual neurons did not improve the reliability of predicting saccade initiation. These results demonstrate how the activity of a population of movement-related but not visual neurons in the FEF contributes to the control of saccade initiation. The results also validate these analytical procedures for identifying signals that control saccade initiation in other brain structures.

摘要

反指令(或停止信号)任务通过测量受试者在不同准备程度下响应不频繁的停止信号而抑制运动的能力,来探究对运动起始的控制。先前的研究发现,当与运动相关的神经元活动达到阈值时,扫视运动就会启动,如果活动的增长被中断,扫视运动就会被抑制。为了扩展和评估额叶眼区(FEF)活动与扫视运动起始之间的这种关系,我们进行了两项新的分析。首先,我们将一个神经测量函数拟合到抑制函数上,该神经测量函数描述了带有停止信号的试验中神经活动超过标准放电率的试验比例作为停止信号延迟的函数,而抑制函数描述了产生扫视运动的概率作为停止信号延迟的函数。与运动相关而非视觉的神经元活动在神经测量函数和抑制函数之间提供了最佳的对应关系。其次,我们确定了能最佳区分产生或抑制扫视运动的试验中测量的放电率分布的标准放电率。与运动相关而非视觉的神经元的差异活动可以区分是否发生了扫视运动。通过这两种方法为单个神经元确定的阈值放电率是一致的。为了研究与运动相关的活动对运动起始的预测有多可靠,我们使用来自相同或不同神经元的越来越多试验的活动样本进行了分析。起始阈值的两种测量方法的可靠性都随着试验次数和神经元数量的增加而提高,直到达到10到20个与运动相关的神经元之间的渐近线。结合视觉神经元的活动并没有提高预测扫视运动起始的可靠性。这些结果证明了FEF中与运动相关而非视觉的神经元群体的活动如何有助于控制扫视运动的起始。这些结果也验证了这些分析程序,用于识别控制其他脑结构中扫视运动起始的信号。

相似文献

1
Relation of frontal eye field activity to saccade initiation during a countermanding task.
Exp Brain Res. 2008 Sep;190(2):135-51. doi: 10.1007/s00221-008-1455-0. Epub 2008 Jul 5.
2
Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding.
J Neurophysiol. 2009 Dec;102(6):3091-100. doi: 10.1152/jn.00270.2009. Epub 2009 Sep 23.
3
Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity.
J Neurophysiol. 1998 Feb;79(2):817-34. doi: 10.1152/jn.1998.79.2.817.
5
Saccade preparation signals in the human frontal and parietal cortices.
J Neurophysiol. 2008 Jan;99(1):133-45. doi: 10.1152/jn.00899.2007. Epub 2007 Nov 21.
7
Pre-excitatory pause in frontal eye field responses.
Exp Brain Res. 2001 Jul;139(1):53-8. doi: 10.1007/s002210100750.
8
Neural basis of adaptive response time adjustment during saccade countermanding.
J Neurosci. 2011 Aug 31;31(35):12604-12. doi: 10.1523/JNEUROSCI.1868-11.2011.
9
Parallel programming of saccades in the macaque frontal eye field: are sequential motor plans coactivated?
J Neurophysiol. 2020 Jan 1;123(1):107-119. doi: 10.1152/jn.00545.2018. Epub 2019 Nov 13.
10
Subthreshold microstimulation in frontal eye fields updates spatial memories.
Exp Brain Res. 2007 Aug;181(3):477-92. doi: 10.1007/s00221-007-0947-7. Epub 2007 May 8.

引用本文的文献

1
Parallel signatures of cognitive maturation in primate antisaccade performance and prefrontal activity.
iScience. 2024 Jul 11;27(8):110488. doi: 10.1016/j.isci.2024.110488. eCollection 2024 Aug 16.
2
Neuronal activity in posterior parietal cortex area LIP is not sufficient for saccadic eye movement production.
Front Integr Neurosci. 2023 Nov 24;17:1251431. doi: 10.3389/fnint.2023.1251431. eCollection 2023.
3
Resilience of FEF neuronal saccade code to V4 perturbations.
J Neurophysiol. 2023 Nov 1;130(5):1243-1251. doi: 10.1152/jn.00056.2023. Epub 2023 Oct 18.
4
5
Transient neuronal suppression for exploitation of new sensory evidence.
Nat Commun. 2022 Jan 10;13(1):23. doi: 10.1038/s41467-021-27697-4.
7
Altered effective connectivity within an oculomotor control network in individuals with schizophrenia.
Neuroimage Clin. 2021;31:102764. doi: 10.1016/j.nicl.2021.102764. Epub 2021 Jul 14.
8
Dissociation of Medial Frontal β-Bursts and Executive Control.
J Neurosci. 2020 Nov 25;40(48):9272-9282. doi: 10.1523/JNEUROSCI.2072-20.2020. Epub 2020 Oct 23.
9
Efficacy of inhibitory control depends on procrastination and deceleration in saccade planning.
Exp Brain Res. 2020 Oct;238(10):2417-2432. doi: 10.1007/s00221-020-05901-z. Epub 2020 Aug 9.
10
Distinct Sources of Variability Affect Eye Movement Preparation.
J Neurosci. 2019 Jun 5;39(23):4511-4526. doi: 10.1523/JNEUROSCI.2329-18.2019. Epub 2019 Mar 26.

本文引用的文献

2
The effect of visual search efficiency on response preparation: neurophysiological evidence for discrete flow.
Psychol Sci. 2008 Feb;19(2):128-36. doi: 10.1111/j.1467-9280.2008.02058.x.
3
Cellular scaling rules for primate brains.
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3562-7. doi: 10.1073/pnas.0611396104. Epub 2007 Feb 20.
4
Frontal eye field contributions to rapid corrective saccades.
J Neurophysiol. 2007 Feb;97(2):1457-69. doi: 10.1152/jn.00433.2006. Epub 2006 Nov 29.
6
Modeling response signal and response time data.
Cogn Psychol. 2006 Nov;53(3):195-237. doi: 10.1016/j.cogpsych.2005.10.002. Epub 2006 Aug 4.
7
Executive control of countermanding saccades by the supplementary eye field.
Nat Neurosci. 2006 Jul;9(7):925-31. doi: 10.1038/nn1714. Epub 2006 May 28.
8
Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons.
J Neurophysiol. 2006 Apr;95(4):2070-82. doi: 10.1152/jn.01308.2005. Epub 2006 Jan 4.
9
Neural codes for perceptual discrimination in primary somatosensory cortex.
Nat Neurosci. 2005 Sep;8(9):1210-9. doi: 10.1038/nn1513. Epub 2005 Jul 31.
10
An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance.
Annu Rev Neurosci. 2005;28:403-50. doi: 10.1146/annurev.neuro.28.061604.135709.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验