Suppr超能文献

中链脱氢酶/还原酶工程数据库:对一个多样化蛋白质家族进行系统分析以理解序列-结构-功能关系

The Medium-Chain Dehydrogenase/reductase Engineering Database: a systematic analysis of a diverse protein family to understand sequence-structure-function relationship.

作者信息

Knoll Michael, Pleiss Jürgen

机构信息

Institute of Technical Biochemistry, University of Stuttgart, D-70569 Stuttgart, Germany.

出版信息

Protein Sci. 2008 Oct;17(10):1689-97. doi: 10.1110/ps.035428.108. Epub 2008 Jul 9.

Abstract

The Medium-Chain Dehydrogenase/Reductase Engineering Database (MDRED, http://www.mdred.uni-stuttgart.de) has been established to serve as an analysis tool for a systematic investigation of sequence-structure-function relationships. It includes sequence and structure information of 2684 and 42 medium-chain dehydrogenases/reductases (MDRs), respectively. Although MDRs are very diverse in sequence, they have a conserved tertiary structure. MDRs are assigned to 199 homologous families and 29 superfamilies. For each family, annotated multiple sequence alignments are provided, and functionally relevant residues are annotated. Twenty-five superfamilies were classified as zinc-containing MDRs, four as non-zinc-containing MDRs. For the zinc-containing MDRs, three subclasses were identified by systematic analysis of a variable loop region, the quaternary structure determining loop (QSDL): the class of short, medium, and long QSDL, which include 11, 3, and 5 superfamilies, respectively. The length of the QSDL is predictive for tetramer (short QSDL) and dimer (long QSDL) formation. The class of medium QSDL includes both tetrameric and dimeric MDRs. The shape of the substrate-binding site is highly conserved in all zinc-containing MDRs with the exception of two variable regions, the substrate recognition sites (SRS): two residues located on the QSDL (SRS1) and, for the class of long QSDL, one residue located in the catalytic domain (SRS2). The MDRED is the first online-accessible resource of MDRs that integrates information on sequence, structure, and function. Annotation of functionally relevant residues assist the understanding of sequence-structure-function relationships. Thus, the MDRED serves as a valuable tool to identify potential hotspots for engineering properties such as substrate specificity.

相似文献

引用本文的文献

1
Utilizing Alcohol for Alkane Biosynthesis by Introducing a Fatty Alcohol Dehydrogenase.利用引入的脂肪醇脱氢酶生产烷烃的酒精。
Appl Environ Microbiol. 2022 Dec 13;88(23):e0126422. doi: 10.1128/aem.01264-22. Epub 2022 Nov 23.
2
Engineered as the Platform for the Production of Aromatic Aldehydes.设计为用于生产芳香醛的平台。
Front Bioeng Biotechnol. 2022 May 12;10:880277. doi: 10.3389/fbioe.2022.880277. eCollection 2022.
4
Microbial Hydroxysteroid Dehydrogenases: From Alpha to Omega.微生物羟基类固醇脱氢酶:从α到ω
Microorganisms. 2021 Feb 24;9(3):469. doi: 10.3390/microorganisms9030469.
8
Genetic improvement of native xylose-fermenting yeasts for ethanol production.用于乙醇生产的本地木糖发酵酵母的基因改良。
J Ind Microbiol Biotechnol. 2015 Jan;42(1):1-20. doi: 10.1007/s10295-014-1535-z. Epub 2014 Nov 18.
9
Yeast alcohol dehydrogenase structure and catalysis.酵母醇脱氢酶的结构与催化。
Biochemistry. 2014 Sep 16;53(36):5791-803. doi: 10.1021/bi5006442. Epub 2014 Sep 3.

本文引用的文献

3
GenBank.基因银行
Nucleic Acids Res. 2007 Jan;35(Database issue):D21-5. doi: 10.1093/nar/gkl986.
7
Multiplicity of eukaryotic ADH and other MDR forms.
Chem Biol Interact. 2003 Feb 1;143-144:255-61. doi: 10.1016/s0009-2797(02)00242-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验