Covert Markus W, Xiao Nan, Chen Tiffany J, Karr Jonathan R
Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305-5444, USA.
Bioinformatics. 2008 Sep 15;24(18):2044-50. doi: 10.1093/bioinformatics/btn352. Epub 2008 Jul 10.
The effort to build a whole-cell model requires the development of new modeling approaches, and in particular, the integration of models for different types of processes, each of which may be best described using different representation. Flux-balance analysis (FBA) has been useful for large-scale analysis of metabolic networks, and methods have been developed to incorporate transcriptional regulation (regulatory FBA, or rFBA). Of current interest is the integration of these approaches with detailed models based on ordinary differential equations (ODEs).
We developed an approach to modeling the dynamic behavior of metabolic, regulatory and signaling networks by combining FBA with regulatory Boolean logic, and ordinary differential equations. We use this approach (called integrated FBA, or iFBA) to create an integrated model of Escherichia coli which combines a flux-balance-based, central carbon metabolic and transcriptional regulatory model with an ODE-based, detailed model of carbohydrate uptake control. We compare the predicted Escherichia coli wild-type and single gene perturbation phenotypes for diauxic growth on glucose/lactose and glucose/glucose-6-phosphate with that of the individual models. We find that iFBA encapsulates the dynamics of three internal metabolites and three transporters inadequately predicted by rFBA. Furthermore, we find that iFBA predicts different and more accurate phenotypes than the ODE model for 85 of 334 single gene perturbation simulations, as well for the wild-type simulations. We conclude that iFBA is a significant improvement over the individual rFBA and ODE modeling paradigms.
All MATLAB files used in this study are available at http://www.simtk.org/home/ifba/.
Supplementary data are available at Bioinformatics online.
构建全细胞模型需要开发新的建模方法,特别是要整合不同类型过程的模型,每种过程可能使用不同的表示方法来进行最佳描述。通量平衡分析(FBA)对于代谢网络的大规模分析很有用,并且已经开发出了纳入转录调控的方法(调控通量平衡分析,即rFBA)。当前人们感兴趣的是将这些方法与基于常微分方程(ODE)的详细模型相结合。
我们开发了一种通过将FBA与调控布尔逻辑和常微分方程相结合来对代谢、调控和信号网络的动态行为进行建模的方法。我们使用这种方法(称为整合FBA,即iFBA)创建了一个大肠杆菌的整合模型,该模型将基于通量平衡的中心碳代谢和转录调控模型与基于ODE的碳水化合物摄取控制详细模型相结合。我们将预测的大肠杆菌野生型以及在葡萄糖/乳糖和葡萄糖/6-磷酸葡萄糖上进行二次生长的单基因扰动表型与各个模型的表型进行了比较。我们发现iFBA能够更充分地概括rFBA预测不足的三种内部代谢物和三种转运蛋白的动态变化。此外,我们发现对于334个单基因扰动模拟中的85个以及野生型模拟,iFBA预测出的表型与ODE模型不同且更准确。我们得出结论,iFBA相对于单独的rFBA和ODE建模范式有显著改进。
本研究中使用的所有MATLAB文件可在http://www.simtk.org/home/ifba/获取。
补充数据可在《生物信息学》在线版获取。