Suppr超能文献

整合大肠杆菌中的代谢、转录调控和信号转导模型。

Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli.

作者信息

Covert Markus W, Xiao Nan, Chen Tiffany J, Karr Jonathan R

机构信息

Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305-5444, USA.

出版信息

Bioinformatics. 2008 Sep 15;24(18):2044-50. doi: 10.1093/bioinformatics/btn352. Epub 2008 Jul 10.

Abstract

MOTIVATION

The effort to build a whole-cell model requires the development of new modeling approaches, and in particular, the integration of models for different types of processes, each of which may be best described using different representation. Flux-balance analysis (FBA) has been useful for large-scale analysis of metabolic networks, and methods have been developed to incorporate transcriptional regulation (regulatory FBA, or rFBA). Of current interest is the integration of these approaches with detailed models based on ordinary differential equations (ODEs).

RESULTS

We developed an approach to modeling the dynamic behavior of metabolic, regulatory and signaling networks by combining FBA with regulatory Boolean logic, and ordinary differential equations. We use this approach (called integrated FBA, or iFBA) to create an integrated model of Escherichia coli which combines a flux-balance-based, central carbon metabolic and transcriptional regulatory model with an ODE-based, detailed model of carbohydrate uptake control. We compare the predicted Escherichia coli wild-type and single gene perturbation phenotypes for diauxic growth on glucose/lactose and glucose/glucose-6-phosphate with that of the individual models. We find that iFBA encapsulates the dynamics of three internal metabolites and three transporters inadequately predicted by rFBA. Furthermore, we find that iFBA predicts different and more accurate phenotypes than the ODE model for 85 of 334 single gene perturbation simulations, as well for the wild-type simulations. We conclude that iFBA is a significant improvement over the individual rFBA and ODE modeling paradigms.

AVAILABILITY

All MATLAB files used in this study are available at http://www.simtk.org/home/ifba/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

构建全细胞模型需要开发新的建模方法,特别是要整合不同类型过程的模型,每种过程可能使用不同的表示方法来进行最佳描述。通量平衡分析(FBA)对于代谢网络的大规模分析很有用,并且已经开发出了纳入转录调控的方法(调控通量平衡分析,即rFBA)。当前人们感兴趣的是将这些方法与基于常微分方程(ODE)的详细模型相结合。

结果

我们开发了一种通过将FBA与调控布尔逻辑和常微分方程相结合来对代谢、调控和信号网络的动态行为进行建模的方法。我们使用这种方法(称为整合FBA,即iFBA)创建了一个大肠杆菌的整合模型,该模型将基于通量平衡的中心碳代谢和转录调控模型与基于ODE的碳水化合物摄取控制详细模型相结合。我们将预测的大肠杆菌野生型以及在葡萄糖/乳糖和葡萄糖/6-磷酸葡萄糖上进行二次生长的单基因扰动表型与各个模型的表型进行了比较。我们发现iFBA能够更充分地概括rFBA预测不足的三种内部代谢物和三种转运蛋白的动态变化。此外,我们发现对于334个单基因扰动模拟中的85个以及野生型模拟,iFBA预测出的表型与ODE模型不同且更准确。我们得出结论,iFBA相对于单独的rFBA和ODE建模范式有显著改进。

可用性

本研究中使用的所有MATLAB文件可在http://www.simtk.org/home/ifba/获取。

补充信息

补充数据可在《生物信息学》在线版获取。

相似文献

1
Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli.
Bioinformatics. 2008 Sep 15;24(18):2044-50. doi: 10.1093/bioinformatics/btn352. Epub 2008 Jul 10.
3
Construction and completion of flux balance models from pathway databases.
Bioinformatics. 2012 Feb 1;28(3):388-96. doi: 10.1093/bioinformatics/btr681. Epub 2012 Jan 18.
4
Dynamic analysis of integrated signaling, metabolic, and regulatory networks.
PLoS Comput Biol. 2008 May 23;4(5):e1000086. doi: 10.1371/journal.pcbi.1000086.
6
Effect of weight-added regulatory networks on constraint-based metabolic models of Escherichia coli.
Biosystems. 2007 Nov-Dec;90(3):843-55. doi: 10.1016/j.biosystems.2007.05.003. Epub 2007 May 23.
7
Phenotype prediction in regulated metabolic networks.
BMC Syst Biol. 2008 Apr 25;2:37. doi: 10.1186/1752-0509-2-37.
8
Emergence of diauxie as an optimal growth strategy under resource allocation constraints in cellular metabolism.
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.2013836118.
9
Dynamic flux balance analysis of diauxic growth in Escherichia coli.
Biophys J. 2002 Sep;83(3):1331-40. doi: 10.1016/S0006-3495(02)73903-9.
10
Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in Escherichia coli.
J Theor Biol. 2012 Feb 21;295:100-15. doi: 10.1016/j.jtbi.2011.11.010. Epub 2011 Nov 28.

引用本文的文献

1
RBI: a novel algorithm for regulatory-metabolic network model in designing the optimal mutant strain.
PeerJ Comput Sci. 2025 May 27;11:e2880. doi: 10.7717/peerj-cs.2880. eCollection 2025.
2
Metabolic modelling as a powerful tool to identify critical components of Pneumocystis growth medium.
PLoS Comput Biol. 2024 Oct 28;20(10):e1012545. doi: 10.1371/journal.pcbi.1012545. eCollection 2024 Oct.
3
Foundations of a Compositional Systems Biology.
ArXiv. 2024 Nov 22:arXiv:2408.00942v2.
5
Boolean model of the gene regulatory network of CCBH4851.
Front Microbiol. 2023 Nov 30;14:1274740. doi: 10.3389/fmicb.2023.1274740. eCollection 2023.
6
Technologies for whole-cell modeling: Genome-wide reconstruction of a cell in silico.
Dev Growth Differ. 2023 Dec;65(9):554-564. doi: 10.1111/dgd.12897. Epub 2023 Nov 8.
7
Computational speed-up of large-scale, single-cell model simulations via a fully integrated SBML-based format.
Bioinform Adv. 2023 Mar 23;3(1):vbad039. doi: 10.1093/bioadv/vbad039. eCollection 2023.
8
Metabolomics and modelling approaches for systems metabolic engineering.
Metab Eng Commun. 2022 Oct 15;15:e00209. doi: 10.1016/j.mec.2022.e00209. eCollection 2022 Dec.
9
Integrative modeling of the cell.
Acta Biochim Biophys Sin (Shanghai). 2022 Aug 25;54(9):1213-1221. doi: 10.3724/abbs.2022115.
10
An expanded whole-cell model of E. coli links cellular physiology with mechanisms of growth rate control.
NPJ Syst Biol Appl. 2022 Aug 19;8(1):30. doi: 10.1038/s41540-022-00242-9.

本文引用的文献

1
Dynamic analysis of integrated signaling, metabolic, and regulatory networks.
PLoS Comput Biol. 2008 May 23;4(5):e1000086. doi: 10.1371/journal.pcbi.1000086.
2
Something from nothing: bridging the gap between constraint-based and kinetic modelling.
FEBS J. 2007 Nov;274(21):5576-85. doi: 10.1111/j.1742-4658.2007.06076.x. Epub 2007 Oct 8.
3
Analysis of global control of Escherichia coli carbohydrate uptake.
BMC Syst Biol. 2007 Sep 13;1:42. doi: 10.1186/1752-0509-1-42.
4
Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12.
J Bacteriol. 2007 Oct;189(19):6891-900. doi: 10.1128/JB.00819-07. Epub 2007 Aug 3.
5
Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli.
Mol Syst Biol. 2007;3:119. doi: 10.1038/msb4100162. Epub 2007 Jul 10.
7
A genome-scale computational study of the interplay between transcriptional regulation and metabolism.
Mol Syst Biol. 2007;3:101. doi: 10.1038/msb4100141. Epub 2007 Apr 17.
8
Systems approach to refining genome annotation.
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17480-4. doi: 10.1073/pnas.0603364103. Epub 2006 Nov 6.
9
Dynamic analysis of optimality in myocardial energy metabolism under normal and ischemic conditions.
Mol Syst Biol. 2006;2:2006.0031. doi: 10.1038/msb4100071. Epub 2006 Jun 6.
10
A quantitative approach to catabolite repression in Escherichia coli.
J Biol Chem. 2006 Feb 3;281(5):2578-84. doi: 10.1074/jbc.M508090200. Epub 2005 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验