Shlomi Tomer, Eisenberg Yariv, Sharan Roded, Ruppin Eytan
School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
Mol Syst Biol. 2007;3:101. doi: 10.1038/msb4100141. Epub 2007 Apr 17.
This paper presents a new method, steady-state regulatory flux balance analysis (SR-FBA), for predicting gene expression and metabolic fluxes in a large-scale integrated metabolic-regulatory model. Using SR-FBA to study the metabolism of Escherichia coli, we quantify the extent to which the different levels of metabolic and transcriptional regulatory constraints determine metabolic behavior: metabolic constraints determine the flux activity state of 45-51% of metabolic genes, depending on the growth media, whereas transcription regulation determines the flux activity state of 13-20% of the genes. A considerable number of 36 genes are redundantly expressed, that is, they are expressed even though the fluxes of their associated reactions are zero, indicating that they are not optimally tuned for cellular flux demands. The undetermined state of the remaining approximately 30% of the genes suggests that they may represent metabolic variability within a given growth medium. Overall, SR-FBA enables one to address a host of new questions concerning the interplay between regulation and metabolism.
本文提出了一种新方法——稳态调节通量平衡分析(SR-FBA),用于预测大规模整合代谢调节模型中的基因表达和代谢通量。使用SR-FBA研究大肠杆菌的代谢,我们量化了不同水平的代谢和转录调节约束决定代谢行为的程度:代谢约束决定了45%-51%的代谢基因的通量活性状态,这取决于生长培养基,而转录调节决定了13%-20%的基因的通量活性状态。相当数量的36个基因被冗余表达,也就是说,即使其相关反应的通量为零,它们仍被表达,这表明它们没有针对细胞通量需求进行最佳调节。其余约30%的基因的不确定状态表明,它们可能代表给定生长培养基内的代谢变异性。总体而言,SR-FBA使人们能够解决一系列关于调节与代谢之间相互作用的新问题。