Suppr超能文献

调控代谢网络中的表型预测。

Phenotype prediction in regulated metabolic networks.

作者信息

Kaleta Christoph, Centler Florian, di Fenizio Pietro Speroni, Dittrich Peter

机构信息

Bio Systems Analysis Group, Department of Mathematics and Computer Science, Friedrich Schiller University Jena, Germany.

出版信息

BMC Syst Biol. 2008 Apr 25;2:37. doi: 10.1186/1752-0509-2-37.

Abstract

BACKGROUND

Due to the growing amount of biological knowledge that is incorporated into metabolic network models, their analysis has become more and more challenging. Here, we examine the capabilities of the recently introduced chemical organization theory (OT) to ease this task. Considering only network stoichiometry, the theory allows the prediction of all potentially persistent species sets and therewith rigorously relates the structure of a network to its potential dynamics. By this, the phenotypes implied by a metabolic network can be predicted without the need for explicit knowledge of the detailed reaction kinetics.

RESULTS

We propose an approach to deal with regulation - and especially inhibitory interactions - in chemical organization theory. One advantage of this approach is that the metabolic network and its regulation are represented in an integrated way as one reaction network. To demonstrate the feasibility of this approach we examine a model by Covert and Palsson (J Biol Chem, 277(31), 2002) of the central metabolism of E. coli that incorporates the regulation of all involved genes. Our method correctly predicts the known growth phenotypes on 16 different substrates. Without specific assumptions, organization theory correctly predicts the lethality of knockout experiments in 101 out of 116 cases. Taking into account the same model specific assumptions as in the regulatory flux balance analysis (rFBA) by Covert and Palsson, the same performance is achieved (106 correctly predicted cases). Two model specific assumptions had to be considered: first, we have to assume that secreted molecules do not influence the regulatory system, and second, that metabolites with increasing concentrations indicate a lethal state.

CONCLUSION

The introduced approach to model a metabolic network and its regulation in an integrated way as one reaction network makes organization analysis a universal technique to study the potential behavior of biological network models. Applying multiple methods like OT and rFBA is shown to be valuable to uncover critical assumptions and helps to improve model coherence.

摘要

背景

由于纳入代谢网络模型的生物学知识不断增加,对其进行分析变得越来越具有挑战性。在此,我们研究了最近引入的化学组织理论(OT)在简化这项任务方面的能力。仅考虑网络化学计量学,该理论允许预测所有潜在的持久物种集,并由此严格地将网络结构与其潜在动态联系起来。通过这种方式,无需详细了解反应动力学的明确知识,就可以预测代谢网络所隐含的表型。

结果

我们提出了一种在化学组织理论中处理调控(特别是抑制性相互作用)的方法。这种方法的一个优点是,代谢网络及其调控以一种综合的方式表示为一个反应网络。为了证明这种方法的可行性,我们研究了Covert和Palsson(《生物化学杂志》,2002年,第277卷,第31期)提出的大肠杆菌中心代谢模型,该模型纳入了所有相关基因 的调控。我们的方法正确地预测了在16种不同底物上已知的生长表型。在没有特定假设的情况下,组织理论在116个案例中的101个中正确地预测了基因敲除实验的致死性。考虑与Covert和Palsson的调控通量平衡分析(rFBA)中相同的模型特定假设,可获得相同的性能(106个正确预测的案例)。必须考虑两个模型特定假设:第一,我们必须假设分泌分子不会影响调控系统;第二,浓度增加的代谢物表明处于致死状态。

结论

所引入的将代谢网络及其调控作为一个反应网络进行综合建模的方法,使组织分析成为研究生物网络模型潜在行为 的通用技术。事实证明,应用多种方法,如OT和rFBA,对于揭示关键假设和帮助提高模型一致性很有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5008/2443871/2d1e7cf4f596/1752-0509-2-37-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验