Suppr超能文献

莱茵衣藻氢化酶与铁氧化还原蛋白之间关联的布朗动力学和分子动力学研究

Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii.

作者信息

Long Hai, Chang Christopher H, King Paul W, Ghirardi Maria L, Kim Kwiseon

机构信息

National Renewable Energy Laboratory, Golden, Colorado, USA.

出版信息

Biophys J. 2008 Oct;95(8):3753-66. doi: 10.1529/biophysj.107.127548. Epub 2008 Jul 11.

Abstract

The [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii can catalyze the reduction of protons to hydrogen gas using electrons supplied from photosystem I and transferred via ferredoxin. To better understand the association of the hydrogenase and the ferredoxin, we have simulated the process over multiple timescales. A Brownian dynamics simulation method gave an initial thorough sampling of the rigid-body translational and rotational phase spaces, and the resulting trajectories were used to compute the occupancy and free-energy landscapes. Several important hydrogenase-ferredoxin encounter complexes were identified from this analysis, which were then individually simulated using atomistic molecular dynamics to provide more details of the hydrogenase and ferredoxin interaction. The ferredoxin appeared to form reasonable complexes with the hydrogenase in multiple orientations, some of which were good candidates for inclusion in a transition state ensemble of configurations for electron transfer.

摘要

来自绿藻莱茵衣藻的[FeFe]氢化酶能够利用光系统I提供并通过铁氧化还原蛋白传递的电子,催化质子还原为氢气。为了更好地理解氢化酶与铁氧化还原蛋白之间的关联,我们在多个时间尺度上对该过程进行了模拟。布朗动力学模拟方法对刚体平移和旋转相空间进行了初步的全面采样,所得轨迹用于计算占有率和自由能景观。通过该分析确定了几个重要的氢化酶-铁氧化还原蛋白相遇复合物,然后使用原子分子动力学对其进行单独模拟,以提供氢化酶与铁氧化还原蛋白相互作用的更多细节。铁氧化还原蛋白似乎能与氢化酶以多种取向形成合理的复合物,其中一些很可能包含在电子转移构型的过渡态系综中。

相似文献

3
Structural Insight into the Complex of Ferredoxin and [FeFe] Hydrogenase from Chlamydomonas reinhardtii.
Chembiochem. 2015 Jul 27;16(11):1663-9. doi: 10.1002/cbic.201500130. Epub 2015 Jun 17.
4
Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii.
Biophys J. 2007 Nov 1;93(9):3034-45. doi: 10.1529/biophysj.107.108589. Epub 2007 Jul 27.
5
Iron-Sulfur Peptides Mimicking Ferredoxin for an Efficient Electron Transfer to Hydrogenase.
Chembiochem. 2024 Oct 16;25(20):e202400380. doi: 10.1002/cbic.202400380. Epub 2024 Oct 4.
6
Evolution of Chlamydomonas reinhardtii ferredoxins and their interactions with [FeFe]-hydrogenases.
Photosynth Res. 2017 Dec;134(3):307-316. doi: 10.1007/s11120-017-0409-4. Epub 2017 Jun 15.
7
Pyruvate:ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii.
J Biol Chem. 2013 Feb 8;288(6):4368-77. doi: 10.1074/jbc.M112.429985. Epub 2012 Dec 20.
8
A novel, anaerobically induced ferredoxin in Chlamydomonas reinhardtii.
FEBS Lett. 2009 Jan 22;583(2):325-9. doi: 10.1016/j.febslet.2008.12.018. Epub 2008 Dec 26.
9
Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9396-401. doi: 10.1073/pnas.1103659108. Epub 2011 May 23.
10
The structurally unique photosynthetic Chlorella variabilis NC64A hydrogenase does not interact with plant-type ferredoxins.
Biochim Biophys Acta Bioenerg. 2017 Sep;1858(9):771-778. doi: 10.1016/j.bbabio.2017.06.004. Epub 2017 Jun 21.

引用本文的文献

2
Classification of protein-protein association rates based on biophysical informatics.
BMC Bioinformatics. 2021 Aug 17;22(1):408. doi: 10.1186/s12859-021-04323-0.
3
Using Coarse-Grained Simulations to Characterize the Mechanisms of Protein-Protein Association.
Biomolecules. 2020 Jul 15;10(7):1056. doi: 10.3390/biom10071056.
4
Understanding the Impacts of Conformational Dynamics on the Regulation of Protein-Protein Association by a Multiscale Simulation Method.
J Chem Theory Comput. 2020 Aug 11;16(8):5323-5333. doi: 10.1021/acs.jctc.0c00439. Epub 2020 Jul 29.
5
A Multiscale Computational Model for Simulating the Kinetics of Protein Complex Assembly.
Methods Mol Biol. 2018;1764:401-411. doi: 10.1007/978-1-4939-7759-8_26.
6
Evolution of Chlamydomonas reinhardtii ferredoxins and their interactions with [FeFe]-hydrogenases.
Photosynth Res. 2017 Dec;134(3):307-316. doi: 10.1007/s11120-017-0409-4. Epub 2017 Jun 15.
8
Understanding ligand-receptor non-covalent binding kinetics using molecular modeling.
Front Biosci (Landmark Ed). 2017 Jan 1;22(6):960-981. doi: 10.2741/4527.
9
[Fe-Fe]-hydrogenase Reactivated by Residue Mutations as Bridging Carbonyl Rearranges: A QM/MM Study.
Int J Quantum Chem. 2010 Nov 15;110(14):2705-2718. doi: 10.1002/qua.22381.
10
Identification of global ferredoxin interaction networks in Chlamydomonas reinhardtii.
J Biol Chem. 2013 Dec 6;288(49):35192-209. doi: 10.1074/jbc.M113.483727. Epub 2013 Oct 7.

本文引用的文献

2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Oxygen sensitivity of algal H2- production.
Appl Biochem Biotechnol. 1997 Spring;63-65:141-51. doi: 10.1007/BF02920420.
4
Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii.
Biophys J. 2007 Nov 1;93(9):3034-45. doi: 10.1529/biophysj.107.108589. Epub 2007 Jul 27.
5
Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways.
J Biol Chem. 2007 Aug 31;282(35):25475-86. doi: 10.1074/jbc.M701415200. Epub 2007 Jun 12.
7
Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms.
Annu Rev Plant Biol. 2007;58:71-91. doi: 10.1146/annurev.arplant.58.032806.103848.
8
Energy landscape and transition state of protein-protein association.
Biophys J. 2007 Mar 1;92(5):1486-502. doi: 10.1529/biophysj.106.096024. Epub 2006 Dec 1.
9
Visualization of transient encounter complexes in protein-protein association.
Nature. 2006 Nov 16;444(7117):383-6. doi: 10.1038/nature05201. Epub 2006 Oct 15.
10
Photosynthesis as a power supply for (bio-)hydrogen production.
Trends Plant Sci. 2006 Nov;11(11):543-9. doi: 10.1016/j.tplants.2006.09.001. Epub 2006 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验