Suppr超能文献

丙酮酸:铁氧还蛋白氧化还原酶与莱茵衣藻的光独立产氢相偶联。

Pyruvate:ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii.

机构信息

Ruhr Universität Bochum, Fakultät für Biologie und Biotechnologie, AG Photobiotechnologie, 44801 Bochum, Germany.

出版信息

J Biol Chem. 2013 Feb 8;288(6):4368-77. doi: 10.1074/jbc.M112.429985. Epub 2012 Dec 20.

Abstract

In anaerobiosis, the green alga Chlamydomonas reinhardtii evolves molecular hydrogen (H(2)) as one of several fermentation products. H(2) is generated mostly by the [Fe-Fe]-hydrogenase HYDA1, which uses plant type ferredoxin PETF/FDX1 (PETF) as an electron donor. Dark fermentation of the alga is mainly of the mixed acid type, because formate, ethanol, and acetate are generated by a pyruvate:formate lyase pathway similar to Escherichia coli. However, C. reinhardtii also possesses the pyruvate:ferredoxin oxidoreductase PFR1, which, like pyruvate:formate lyase and HYDA1, is localized in the chloroplast. PFR1 has long been suggested to be responsible for the low but significant H(2) accumulation in the dark because the catalytic mechanism of pyruvate:ferredoxin oxidoreductase involves the reduction of ferredoxin. With the aim of proving the biochemical feasibility of the postulated reaction, we have heterologously expressed the PFR1 gene in E. coli. Purified recombinant PFR1 is able to transfer electrons from pyruvate to HYDA1, using the ferredoxins PETF and FDX2 as electron carriers. The high reactivity of PFR1 toward oxaloacetate indicates that in vivo, fermentation might also be coupled to an anaerobically active glyoxylate cycle. Our results suggest that C. reinhardtii employs a clostridial type H(2) production pathway in the dark, especially because C. reinhardtii PFR1 was also able to allow H(2) evolution in reaction mixtures containing Clostridium acetobutylicum 2[4Fe-4S]-ferredoxin and [Fe-Fe]-hydrogenase HYDA.

摘要

在无氧条件下,绿藻莱茵衣藻会产生氢气(H₂)作为几种发酵产物之一。H₂主要由[Fe-Fe]氢化酶 HYDA1 产生,该酶使用植物型铁氧还蛋白 PETF/FDX1(PETF)作为电子供体。藻类的暗发酵主要是混合酸型,因为类似于大肠杆菌的丙酮酸:甲酸裂解酶途径会产生甲酸盐、乙醇和乙酸盐。然而,莱茵衣藻还拥有丙酮酸:铁氧还蛋白氧化还原酶 PFR1,它与丙酮酸:甲酸裂解酶和 HYDA1 一样,定位于叶绿体中。长期以来,人们一直认为 PFR1 负责暗发酵中低但显著的 H₂积累,因为丙酮酸:铁氧还蛋白氧化还原酶的催化机制涉及铁氧还蛋白的还原。为了证明假设反应的生化可行性,我们已在大肠杆菌中异源表达了 PFR1 基因。纯化的重组 PFR1 能够从丙酮酸向 HYDA1 传递电子,使用 PETF 和 FDX2 作为电子载体。PFR1 对草酰乙酸的高反应性表明,在体内,发酵也可能与厌氧活性乙醛酸循环偶联。我们的结果表明,莱茵衣藻在黑暗中采用梭菌型 H₂产生途径,特别是因为莱茵衣藻 PFR1 还能够在含有梭菌 2[4Fe-4S]-铁氧还蛋白和[Fe-Fe]氢化酶 HYDA 的反应混合物中允许 H₂的产生。

相似文献

1
Pyruvate:ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii.
J Biol Chem. 2013 Feb 8;288(6):4368-77. doi: 10.1074/jbc.M112.429985. Epub 2012 Dec 20.
2
Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1.
Plant Physiol. 2013 Jan;161(1):57-71. doi: 10.1104/pp.112.208181. Epub 2012 Nov 15.
4
A novel, anaerobically induced ferredoxin in Chlamydomonas reinhardtii.
FEBS Lett. 2009 Jan 22;583(2):325-9. doi: 10.1016/j.febslet.2008.12.018. Epub 2008 Dec 26.
5
Multiple ferredoxin isoforms in Chlamydomonas reinhardtii - their role under stress conditions and biotechnological implications.
Eur J Cell Biol. 2010 Dec;89(12):998-1004. doi: 10.1016/j.ejcb.2010.06.018. Epub 2010 Aug 8.
6
Structural Insight into the Complex of Ferredoxin and [FeFe] Hydrogenase from Chlamydomonas reinhardtii.
Chembiochem. 2015 Jul 27;16(11):1663-9. doi: 10.1002/cbic.201500130. Epub 2015 Jun 17.
7
Evolution of Chlamydomonas reinhardtii ferredoxins and their interactions with [FeFe]-hydrogenases.
Photosynth Res. 2017 Dec;134(3):307-316. doi: 10.1007/s11120-017-0409-4. Epub 2017 Jun 15.
8
Characterization of the key step for light-driven hydrogen evolution in green algae.
J Biol Chem. 2009 Dec 25;284(52):36620-36627. doi: 10.1074/jbc.M109.053496. Epub 2009 Oct 21.
10
A mutant in the ADH1 gene of Chlamydomonas reinhardtii elicits metabolic restructuring during anaerobiosis.
Plant Physiol. 2012 Mar;158(3):1293-305. doi: 10.1104/pp.111.191569. Epub 2012 Jan 23.

引用本文的文献

1
Light-Driven H Production in : Lessons from Engineering of Photosynthesis.
Plants (Basel). 2024 Jul 30;13(15):2114. doi: 10.3390/plants13152114.
4
Changing the tracks: screening for electron transfer proteins to support hydrogen production.
J Biol Inorg Chem. 2022 Oct;27(7):631-640. doi: 10.1007/s00775-022-01956-1. Epub 2022 Aug 29.
5
Synthetic biology for improved hydrogen production in Chlamydomonas reinhardtii.
Microb Biotechnol. 2022 Jul;15(7):1946-1965. doi: 10.1111/1751-7915.14024. Epub 2022 Mar 26.
7
Water oxidation by photosystem II is the primary source of electrons for sustained H photoproduction in nutrient-replete green algae.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29629-29636. doi: 10.1073/pnas.2009210117. Epub 2020 Nov 9.
9
Algae-Bacteria Consortia as a Strategy to Enhance H Production.
Cells. 2020 May 29;9(6):1353. doi: 10.3390/cells9061353.
10
Electron Transfer in Nitrogenase.
Chem Rev. 2020 Jun 24;120(12):5158-5193. doi: 10.1021/acs.chemrev.9b00663. Epub 2020 Jan 30.

本文引用的文献

3
Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405.
Indian J Microbiol. 2008 Jun;48(2):252-66. doi: 10.1007/s12088-008-0036-z. Epub 2008 Jul 27.
4
Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.
Biochim Biophys Acta. 2013 Feb;1827(2):210-23. doi: 10.1016/j.bbabio.2012.08.002. Epub 2012 Aug 10.
5
Function of the chloroplastic NAD(P)H dehydrogenase Nda2 for H₂ photoproduction in sulphur-deprived Chlamydomonas reinhardtii.
J Biotechnol. 2012 Nov 30;162(1):81-8. doi: 10.1016/j.jbiotec.2012.07.002. Epub 2012 Jul 24.
7
Transformation of E. coli by Electroporation.
CSH Protoc. 2006 Jun 1;2006(1):pdb.prot3933. doi: 10.1101/pdb.prot3933.
9
A mutant in the ADH1 gene of Chlamydomonas reinhardtii elicits metabolic restructuring during anaerobiosis.
Plant Physiol. 2012 Mar;158(3):1293-305. doi: 10.1104/pp.111.191569. Epub 2012 Jan 23.
10
Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii.
Planta. 2012 Apr;235(4):729-45. doi: 10.1007/s00425-011-1537-2. Epub 2011 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验