Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
Autophagy. 2022 Jul;18(7):1694-1714. doi: 10.1080/15548627.2021.1997305. Epub 2021 Nov 26.
Macroautophagy/autophagy is a highly conserved nutrient-recycling pathway that eukaryotes utilize to combat diverse stresses including nutrient depletion. Dysregulation of autophagy disrupts cellular homeostasis leading to starvation susceptibility in yeast and disease development in humans. In yeast, the robust autophagy response to starvation is controlled by the upregulation of genes, via regulatory processes involving multiple levels of gene expression. Despite the identification of several regulators through genetic studies, the predominant mechanism of regulation modulating the autophagy response to subtle differences in nutrient status remains undefined. Here, we report the unexpected finding that subtle changes in nutrient availability can cause large differences in autophagy flux, governed by hitherto unknown post-transcriptional regulatory mechanisms affecting the expression of the key autophagyinducing kinase Atg1 (ULK1/ULK2 in mammals). We have identified two novel post-transcriptional regulators of expression, the kinase Rad53 and the RNA-binding protein Ded1 (DDX3 in mammals). Furthermore, we show that DDX3 regulates expression post-transcriptionally, establishing mechanistic conservation and highlighting the power of yeast biology in uncovering regulatory mechanisms that can inform therapeutic approaches.
自噬是一种高度保守的营养物质回收途径,真核生物利用它来应对包括营养物质耗尽在内的各种压力。自噬的失调会破坏细胞的内稳态,导致酵母的饥饿敏感性和人类疾病的发展。在酵母中,通过涉及多个基因表达水平的调控过程,上调基因来控制对饥饿的强烈自噬反应。尽管通过遗传研究已经鉴定出了几种调节剂,但调节自噬反应对营养状态细微差异的主要调节机制仍未确定。在这里,我们报告了一个意外的发现,即营养物质可用性的细微变化会导致自噬通量的巨大差异,这是由迄今未知的影响关键自噬诱导激酶 Atg1(哺乳动物中的 ULK1/ULK2)表达的转录后调控机制所控制。我们已经确定了两个新的 表达的转录后调节剂,激酶 Rad53 和 RNA 结合蛋白 Ded1(哺乳动物中的 DDX3)。此外,我们还表明 DDX3 在后转录水平上调节 表达,建立了机制上的保守性,并强调了酵母生物学在揭示可提供治疗方法信息的调节机制方面的强大功能。