Suppr超能文献

HapMap人群中隐藏的拷贝数变异。

Hidden copy number variation in the HapMap population.

作者信息

Marioni John C, White Michael, Tavaré Simon, Lynch Andrew G

机构信息

Department of Oncology, Computational Biology Group, University of Cambridge, Cancer Research UK Cambridge Research Institute, Robinson Way, Cambridge, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10067-72. doi: 10.1073/pnas.0711252105. Epub 2008 Jul 15.

Abstract

Recently, the extent of copy number variation (CNV) throughout the genome has been shown to be far greater than previously thought. Further, it has been demonstrated that specific copy number variable regions (CNVRs) are associated with particular diseases, suggesting that these genetic variations may have an important biological role. Hence, calling CNVRs and subsequently classifying samples as "losses" or "gains" is of great interest. A number of papers have been published containing classifications of CNVs, and here we show how the presence of pedigree information can be used for assessing the performance of those classification methods. In this article, by examining CNV classifications made in the HapMap samples, we show that estimates of the number of false-positive classifications per individual made by current approaches can be determined. Moreover, commonplace technologies for determining the locations of CNVRs aggregate information across the maternal and paternal chromosomes at the locus of interest. Here, we show that copy number variation on each chromosome can be inferred and, in particular, we discuss the existence of a class of CNVs that are inevitably misclassified and give an estimate of their prevalence. Although our focus is not on the development of calling algorithms per se, we describe and provide an example of how our model might be incorporated into the initial classification procedure to produce more robust results. Finally, we discuss how this methodology might be applied to future studies to obtain better estimates of the extent of CNV across the genome.

摘要

最近研究表明,整个基因组中拷贝数变异(CNV)的范围远比之前认为的要大得多。此外,已经证明特定的拷贝数可变区(CNVR)与特定疾病相关,这表明这些基因变异可能具有重要的生物学作用。因此,识别CNVR并随后将样本分类为“缺失”或“增加”备受关注。已经发表了许多包含CNV分类的论文,在这里我们展示了系谱信息的存在如何用于评估那些分类方法的性能。在本文中,通过检查HapMap样本中的CNV分类,我们表明可以确定当前方法对每个个体的假阳性分类数量的估计。此外,用于确定CNVR位置的常见技术会在感兴趣的基因座处汇总来自母本和父本染色体的信息。在这里,我们表明可以推断每条染色体上的拷贝数变异,特别是,我们讨论了一类不可避免地被错误分类的CNV的存在,并给出了它们的流行率估计。虽然我们的重点不是调用算法本身的开发,但我们描述并提供了一个示例,说明我们的模型如何可以纳入初始分类过程以产生更可靠的结果。最后,我们讨论了这种方法如何应用于未来的研究,以更好地估计全基因组中CNV的范围。

相似文献

1
Hidden copy number variation in the HapMap population.HapMap人群中隐藏的拷贝数变异。
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10067-72. doi: 10.1073/pnas.0711252105. Epub 2008 Jul 15.
6
Analysis of copy number variations among diverse cattle breeds.分析不同牛种的拷贝数变异。
Genome Res. 2010 May;20(5):693-703. doi: 10.1101/gr.105403.110. Epub 2010 Mar 8.

引用本文的文献

本文引用的文献

1
Breakthrough of the year. Human genetic variation.年度突破。人类基因变异。
Science. 2007 Dec 21;318(5858):1842-3. doi: 10.1126/science.318.5858.1842.
7
Structural variation in the human genome.人类基因组中的结构变异。
Nat Rev Genet. 2006 Feb;7(2):85-97. doi: 10.1038/nrg1767.
10
A haplotype map of the human genome.人类基因组单倍型图谱。
Nature. 2005 Oct 27;437(7063):1299-320. doi: 10.1038/nature04226.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验