Suppr超能文献

因果有向无环图与未测量混杂偏倚的方向

Causal directed acyclic graphs and the direction of unmeasured confounding bias.

作者信息

VanderWeele Tyler J, Hernán Miguel A, Robins James M

机构信息

Department of Health Studies, University of Chicago, Chicago, IL 60637, USA.

出版信息

Epidemiology. 2008 Sep;19(5):720-8. doi: 10.1097/EDE.0b013e3181810e29.

Abstract

We present results that allow the researcher in certain cases to determine the direction of the bias that arises when control for confounding is inadequate. The results are given within the context of the directed acyclic graph causal framework and are stated in terms of signed edges. Rigorous definitions for signed edges are provided. We describe cases in which intuition concerning signed edges fails and we characterize the directed acyclic graphs that researchers can use to draw conclusions about the sign of the bias of unmeasured confounding. If there is only one unmeasured confounding variable on the graph, then nonincreasing or nondecreasing average causal effects suffice to draw conclusions about the direction of the bias. When there are more than one unmeasured confounding variable, nonincreasing and nondecreasing average causal effects can be used to draw conclusions only if the various unmeasured confounding variables are independent of one another conditional on the measured covariates. When this conditional independence property does not hold, stronger notions of monotonicity are needed to draw conclusions about the direction of the bias.

摘要

我们给出的结果使研究人员在某些情况下能够确定在控制混杂因素不充分时出现的偏差方向。这些结果是在有向无环图因果框架的背景下给出的,并且用带符号的边来表述。文中提供了带符号边的严格定义。我们描述了关于带符号边的直觉失效的情况,并刻画了研究人员可用于得出关于未测量混杂因素偏差符号结论的有向无环图。如果图上只有一个未测量的混杂变量,那么非递增或非递减的平均因果效应就足以得出关于偏差方向的结论。当有多个未测量的混杂变量时,只有在各种未测量的混杂变量在已测量协变量的条件下相互独立时,非递增和非递减的平均因果效应才能用于得出关于偏差方向的结论。当这种条件独立性属性不成立时,需要更强的单调性概念来得出关于偏差方向的结论。

相似文献

2
Causal Diagrams: Pitfalls and Tips.因果图:陷阱与技巧。
J Epidemiol. 2020 Apr 5;30(4):153-162. doi: 10.2188/jea.JE20190192. Epub 2020 Feb 1.
3
Signed directed acyclic graphs for causal inference.用于因果推断的有向无环符号图。
J R Stat Soc Series B Stat Methodol. 2010 Jan 1;72(1):111-127. doi: 10.1111/j.1467-9868.2009.00728.x.
4
The sign of the bias of unmeasured confounding.未测量混杂因素的偏倚迹象。
Biometrics. 2008 Sep;64(3):702-706. doi: 10.1111/j.1541-0420.2007.00957.x. Epub 2007 Dec 31.
6
Summary of relationships between exchangeability, biasing paths and bias.交换性、偏倚路径和偏倚之间关系的总结。
Eur J Epidemiol. 2015 Oct;30(10):1089-99. doi: 10.1007/s10654-014-9915-2. Epub 2014 Jun 4.
8
Causal Diagram Techniques for Urologic Oncology Research.泌尿外科肿瘤学研究的因果图技术
Clin Genitourin Cancer. 2021 Jun;19(3):271.e1-271.e7. doi: 10.1016/j.clgc.2020.08.003. Epub 2020 Aug 13.
9
Causal graphical views of fixed effects and random effects models.固定效应模型和随机效应模型的因果图形视图。
Br J Math Stat Psychol. 2021 May;74(2):165-183. doi: 10.1111/bmsp.12217. Epub 2020 Oct 15.
10
Reducing bias through directed acyclic graphs.通过有向无环图减少偏差。
BMC Med Res Methodol. 2008 Oct 30;8:70. doi: 10.1186/1471-2288-8-70.

引用本文的文献

8
Early Maternal Prenatal Cannabis Use and Child Developmental Delays.母亲孕早期使用大麻与儿童发育迟缓。
JAMA Netw Open. 2024 Oct 1;7(10):e2440295. doi: 10.1001/jamanetworkopen.2024.40295.

本文引用的文献

1
The sign of the bias of unmeasured confounding.未测量混杂因素的偏倚迹象。
Biometrics. 2008 Sep;64(3):702-706. doi: 10.1111/j.1541-0420.2007.00957.x. Epub 2007 Dec 31.
3
A structural approach to selection bias.一种针对选择偏倚的结构化方法。
Epidemiology. 2004 Sep;15(5):615-25. doi: 10.1097/01.ede.0000135174.63482.43.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验