Department of Education, Seoul National University, Seoul, South Korea.
Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, USA.
Br J Math Stat Psychol. 2021 May;74(2):165-183. doi: 10.1111/bmsp.12217. Epub 2020 Oct 15.
Despite the long-standing discussion on fixed effects (FE) and random effects (RE) models, how and under what conditions both methods can eliminate unmeasured confounding bias has not yet been widely understood in practice. Using a simple pretest-posttest design in a linear setting, this paper translates the conventional algebraic formalization of FE and RE models into causal graphs and provides intuitively accessible graphical explanations about their data-generating and bias-removing processes. The proposed causal graphs highlight that FE and RE models consider different data-generating models. RE models presume a data-generating model that is identical to a randomized controlled trial, while FE models allow for unobserved time-invariant treatment-outcome confounding. Augmenting regular causal graphs that describe data-generating processes by adding the computational structures of FE and RE estimators, the paper visualizes how FE estimators (gain score and deviation score estimators) and RE estimators (quasi-deviation score estimators) offset unmeasured confounding bias. In contrast to standard regression or matching estimators that reduce confounding bias by blocking non-causal paths via conditioning, FE and RE estimators offset confounding bias by deliberately creating new non-causal paths and associations of opposite sign. Though FE and RE estimators are similar in their bias-offsetting mechanisms, the augmented graphs reveal their subtle differences that can result in different biases in observational studies.
尽管固定效应(FE)和随机效应(RE)模型已经讨论了很长时间,但在实践中,这两种方法如何以及在什么条件下可以消除未测量的混杂偏倚,尚未得到广泛理解。本文使用线性设置中的简单预测试后设计,将 FE 和 RE 模型的传统代数形式化转化为因果图,并提供关于它们的数据生成和偏倚消除过程的直观可访问的图形解释。所提出的因果图强调了 FE 和 RE 模型考虑了不同的数据生成模型。RE 模型假设一个与随机对照试验相同的数据生成模型,而 FE 模型允许存在未观察到的、时间不变的治疗效果混杂。通过在描述数据生成过程的常规因果图中添加 FE 和 RE 估计量的计算结构,本文可视化了 FE 估计量(增益得分和偏差得分估计量)和 RE 估计量(拟偏差得分估计量)如何消除未测量的混杂偏倚。与通过条件作用来阻断非因果路径从而减少混杂偏倚的标准回归或匹配估计量不同,FE 和 RE 估计量通过故意创建新的非因果路径和相反符号的关联来消除混杂偏倚。尽管 FE 和 RE 估计量在其偏倚消除机制上相似,但增强后的图揭示了它们的细微差异,这可能导致观察性研究中的不同偏倚。