Suppr超能文献

格子玻尔兹曼方法中的直线速度边界

Straight velocity boundaries in the lattice Boltzmann method.

作者信息

Latt Jonas, Chopard Bastien, Malaspinas Orestis, Deville Michel, Michler Andreas

机构信息

University of Geneva, Geneva, Switzerland.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 2):056703. doi: 10.1103/PhysRevE.77.056703. Epub 2008 May 13.

Abstract

Various ways of implementing boundary conditions for the numerical solution of the Navier-Stokes equations by a lattice Boltzmann method are discussed. Five commonly adopted approaches are reviewed, analyzed, and compared, including local and nonlocal methods. The discussion is restricted to velocity Dirichlet boundary conditions, and to straight on-lattice boundaries which are aligned with the horizontal and vertical lattice directions. The boundary conditions are first inspected analytically by applying systematically the results of a multiscale analysis to boundary nodes. This procedure makes it possible to compare boundary conditions on an equal footing, although they were originally derived from very different principles. It is concluded that all five boundary conditions exhibit second-order accuracy, consistent with the accuracy of the lattice Boltzmann method. The five methods are then compared numerically for accuracy and stability through benchmarks of two-dimensional and three-dimensional flows. None of the methods is found to be throughout superior to the others. Instead, the choice of a best boundary condition depends on the flow geometry, and on the desired trade-off between accuracy and stability. From the findings of the benchmarks, the boundary conditions can be classified into two major groups. The first group comprehends boundary conditions that preserve the information streaming from the bulk into boundary nodes and complete the missing information through closure relations. Boundary conditions in this group are found to be exceptionally accurate at low Reynolds number. Boundary conditions of the second group replace all variables on boundary nodes by new values. They exhibit generally much better numerical stability and are therefore dedicated for use in high Reynolds number flows.

摘要

讨论了通过格子玻尔兹曼方法对纳维-斯托克斯方程进行数值求解时实现边界条件的各种方法。回顾、分析并比较了五种常用的方法,包括局部和非局部方法。讨论仅限于速度狄利克雷边界条件,以及与水平和垂直格子方向对齐的直线型格子边界。首先通过将多尺度分析的结果系统地应用于边界节点来对边界条件进行解析检验。尽管这些边界条件最初是从非常不同的原理推导出来的,但这一过程使得能够在平等的基础上比较边界条件。得出的结论是,所有五种边界条件都具有二阶精度,这与格子玻尔兹曼方法的精度一致。然后通过二维和三维流动的基准测试,对这五种方法在精度和稳定性方面进行了数值比较。没有发现哪种方法在所有方面都优于其他方法。相反,最佳边界条件的选择取决于流动几何形状,以及在精度和稳定性之间所需的权衡。根据基准测试的结果,边界条件可分为两大类。第一类包括那些保留从主体流入边界节点的信息并通过封闭关系补充缺失信息的边界条件。发现这类边界条件在低雷诺数下具有极高的精度。第二类边界条件用新值替换边界节点上的所有变量。它们通常表现出更好的数值稳定性,因此适用于高雷诺数流动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验