Suppr超能文献

用于铜绿假单胞菌稀有脂蛋白A溶菌转糖基酶相互作用组空间定位和体内光亲和捕获的琥珀密码子抑制。

Amber-codon suppression for spatial localization and in vivo photoaffinity capture of the interactome of the Pseudomonas aeruginosa rare lipoprotein A lytic transglycosylase.

作者信息

Avila-Cobian Luis F, Hoshino Hidekazu, Horsman Mark E, Nguyen Van T, Qian Yuanyuan, Feltzer Rhona, Kim Choon, Hu Daniel D, Champion Matthew M, Fisher Jed F, Mobashery Shahriar

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.

出版信息

Protein Sci. 2023 Oct;32(10):e4781. doi: 10.1002/pro.4781.

Abstract

The 11 lytic transglycosylases of Pseudomonas aeruginosa have overlapping activities in the turnover of the cell-wall peptidoglycan. Rare lipoprotein A (RlpA) is distinct among the 11 by its use of only peptidoglycan lacking peptide stems. The spatial localization of RlpA and its interactome within P. aeruginosa are unknown. We employed suppression of introduced amber codons at sites in the rlpA gene for the introduction of the unnatural-amino-acids Ν -[(2-azidoethoxy)carbonyl]-l-lysine (compound 1) and N -[[[3-(3-methyl-3H-diazirin-3-yl)propyl]amino]carbonyl]-l-lysine (compound 2). In live P. aeruginosa, full-length RlpA incorporating compound 1 into its sequence was fluorescently tagged using strained-promoted alkyne-azide cycloaddition and examined by fluorescence microscopy. RlpA is present at low levels along the sidewall length of the bacterium, and at higher levels at the nascent septa of replicating bacteria. In intact P. aeruginosa, UV photolysis of full-length RlpA having compound 2 within its sequence generated a transient reactive carbene, which engaged in photoaffinity capture of neighboring proteins. Thirteen proteins were identified. Three of these proteins-PBP1a, PBP5, and MreB-are members of the bacterial divisome. The use of the complementary methodologies of non-canonical amino-acid incorporation, photoaffinity proximity analysis, and fluorescent microscopy confirm a dominant septal location for the RlpA enzyme of P. aeruginosa, as a divisome-associated activity. This accomplishment adds to the emerging recognition of the value of these methodologies for identification of the intracellular localization of bacterial proteins.

摘要

铜绿假单胞菌的11种溶菌转糖基酶在细胞壁肽聚糖的周转过程中具有重叠活性。稀有脂蛋白A(RlpA)在这11种酶中较为独特,因为它仅作用于缺乏肽茎的肽聚糖。RlpA在铜绿假单胞菌内的空间定位及其相互作用组尚不清楚。我们利用在rlpA基因位点引入琥珀密码子的抑制作用来引入非天然氨基酸N-[(2-叠氮乙氧基)羰基]-L-赖氨酸(化合物1)和N-[[[3-(3-甲基-3H-重氮丙啶-3-基)丙基]氨基]羰基]-L-赖氨酸(化合物2)。在活的铜绿假单胞菌中,通过应变促进的炔-叠氮环加成反应,将掺入化合物1的全长RlpA进行荧光标记,并通过荧光显微镜检查。RlpA沿着细菌的侧壁长度以低水平存在,而在正在复制的细菌的新生隔膜处水平较高。在完整的铜绿假单胞菌中,对序列中含有化合物2的全长RlpA进行紫外光解会产生瞬时反应性卡宾,其与邻近蛋白质进行光亲和捕获。鉴定出了13种蛋白质。其中三种蛋白质——PBP1a、PBP5和MreB——是细菌分裂体的成员。使用非经典氨基酸掺入、光亲和邻近分析和荧光显微镜等互补方法,证实了铜绿假单胞菌的RlpA酶在隔膜处占主导地位,作为一种与分裂体相关的活性。这一成果进一步凸显了这些方法在鉴定细菌蛋白质细胞内定位方面的价值。

相似文献

2
Lytic transglycosylase Slt of Pseudomonas aeruginosa as a periplasmic hub protein.
Protein Sci. 2024 Jul;33(7):e5038. doi: 10.1002/pro.5038.
5
Structural basis of denuded glycan recognition by SPOR domains in bacterial cell division.
Nat Commun. 2019 Dec 5;10(1):5567. doi: 10.1038/s41467-019-13354-4.
6
Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11347-52. doi: 10.1073/pnas.1508536112. Epub 2015 Aug 24.
7
Lytic transglycosylases RlpA and MltC assist in Vibrio cholerae daughter cell separation.
Mol Microbiol. 2019 Oct;112(4):1100-1115. doi: 10.1111/mmi.14349. Epub 2019 Aug 8.
8
Peptidoglycan lytic activity of the Pseudomonas aeruginosa phage phiKZ gp144 lytic transglycosylase.
FEMS Microbiol Lett. 2007 Jan;266(2):201-9. doi: 10.1111/j.1574-6968.2006.00523.x.
9
Turnover of Bacterial Cell Wall by SltB3, a Multidomain Lytic Transglycosylase of Pseudomonas aeruginosa.
ACS Chem Biol. 2016 Jun 17;11(6):1525-31. doi: 10.1021/acschembio.6b00194. Epub 2016 Apr 11.

引用本文的文献

1
Bacterial peptidoglycan as a living polymer.
Curr Opin Chem Biol. 2025 Feb;84:102562. doi: 10.1016/j.cbpa.2024.102562. Epub 2024 Dec 18.
2
Interactors and effects of overexpressing YlxR/RnpM, a conserved RNA binding protein in cyanobacteria.
RNA Biol. 2024 Jan;21(1):1-19. doi: 10.1080/15476286.2024.2429230. Epub 2024 Dec 3.
3
An unnatural amino acid dependent, conditional Pseudomonas vaccine prevents bacterial infection.
Nat Commun. 2024 Aug 8;15(1):6766. doi: 10.1038/s41467-024-50843-7.
4
Lytic transglycosylase Slt of Pseudomonas aeruginosa as a periplasmic hub protein.
Protein Sci. 2024 Jul;33(7):e5038. doi: 10.1002/pro.5038.
5
Structural characterization of lytic transglycosylase MltD of Pseudomonas aeruginosa, a target for the natural product bulgecin A.
Int J Biol Macromol. 2024 May;267(Pt 1):131420. doi: 10.1016/j.ijbiomac.2024.131420. Epub 2024 Apr 5.

本文引用的文献

1
Site-specific dual encoding and labeling of proteins via genetic code expansion.
Cell Chem Biol. 2023 Apr 20;30(4):343-361. doi: 10.1016/j.chembiol.2023.03.004. Epub 2023 Mar 27.
4
Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pair and Derivatives for Genetic Code Expansion.
J Bacteriol. 2023 Feb 22;205(2):e0038522. doi: 10.1128/jb.00385-22. Epub 2023 Jan 25.
5
Mapping the FtsQBL divisome components in bacterial NTD pathogens as potential drug targets.
Front Genet. 2023 Jan 4;13:1010870. doi: 10.3389/fgene.2022.1010870. eCollection 2022.
7
Miniprep assisted proteomics (MAP) for rapid proteomics sample preparation.
Anal Methods. 2023 Feb 16;15(7):916-924. doi: 10.1039/d2ay01549h.
8
reference strains PAO1 and PA14: A genomic, phenotypic, and therapeutic review.
Front Microbiol. 2022 Oct 13;13:1023523. doi: 10.3389/fmicb.2022.1023523. eCollection 2022.
9
In vitro assembly, positioning and contraction of a division ring in minimal cells.
Nat Commun. 2022 Oct 15;13(1):6098. doi: 10.1038/s41467-022-33679-x.
10
Comparative Study of Bacterial SPOR Domains Identifies Functionally Important Differences in Glycan Binding Affinity.
J Bacteriol. 2022 Sep 20;204(9):e0025222. doi: 10.1128/jb.00252-22. Epub 2022 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验