Suppr超能文献

LAMINA:一种用于快速量化叶片大小和形状参数的工具。

LAMINA: a tool for rapid quantification of leaf size and shape parameters.

作者信息

Bylesjö Max, Segura Vincent, Soolanayakanahally Raju Y, Rae Anne M, Trygg Johan, Gustafsson Petter, Jansson Stefan, Street Nathaniel R

机构信息

Research Group for Chemometrics, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.

出版信息

BMC Plant Biol. 2008 Jul 22;8:82. doi: 10.1186/1471-2229-8-82.

Abstract

BACKGROUND

An increased understanding of leaf area development is important in a number of fields: in food and non-food crops, for example short rotation forestry as a biofuels feedstock, leaf area is intricately linked to biomass productivity; in paleontology leaf shape characteristics are used to reconstruct paleoclimate history. Such fields require measurement of large collections of leaves, with resulting conclusions being highly influenced by the accuracy of the phenotypic measurement process.

RESULTS

We have developed LAMINA (Leaf shApe deterMINAtion), a new tool for the automated analysis of images of leaves. LAMINA has been designed to provide classical indicators of leaf shape (blade dimensions) and size (area), which are typically required for correlation analysis to biomass productivity, as well as measures that indicate asymmetry in leaf shape, leaf serration traits, and measures of herbivory damage (missing leaf area). In order to allow Principal Component Analysis (PCA) to be performed, the location of a chosen number of equally spaced boundary coordinates can optionally be returned.

CONCLUSION

We demonstrate the use of the software on a set of 500 scanned images, each containing multiple leaves, collected from a common garden experiment containing 116 clones of Populus tremula (European trembling aspen) that are being used for association mapping, as well as examples of leaves from other species. We show that the software provides an efficient and accurate means of analysing leaf area in large datasets in an automated or semi-automated work flow.

摘要

背景

对叶面积发育的深入理解在许多领域都很重要:在粮食作物和非粮食作物中,例如作为生物燃料原料的短轮伐期林业,叶面积与生物量生产力密切相关;在古生物学中,叶形特征被用于重建古气候历史。这些领域需要对大量叶片进行测量,所得结论会受到表型测量过程准确性的极大影响。

结果

我们开发了LAMINA(叶形测定),这是一种用于自动分析叶片图像的新工具。LAMINA旨在提供叶形(叶片尺寸)和大小(面积)的经典指标,这些指标通常是进行生物量生产力相关性分析所必需的,同时还能提供表明叶形不对称性、叶锯齿特征以及食草损伤(缺失叶面积)的测量值。为了能够进行主成分分析(PCA),可以选择返回一定数量等间距边界坐标的位置。

结论

我们在一组500张扫描图像上展示了该软件的使用情况,每张图像包含多个叶片,这些图像取自一个包含116个欧洲山杨(欧洲颤杨)无性系的共同花园实验,该实验用于关联作图,同时还有其他物种叶片的示例。我们表明,该软件能在自动或半自动工作流程中为分析大型数据集中的叶面积提供一种高效且准确的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7357/2500018/f41311ceed9b/1471-2229-8-82-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验