Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA.
Dose Response. 2008;6(4):333-51. doi: 10.2203/dose-response.07-005.Scott. Epub 2007 Sep 30.
The current system of radiation protection for humans is based on the linear-no-threshold (LNT) risk-assessment paradigm. Perceived harm to irradiated nuclear workers and the public is mainly reflected through calculated hypothetical increased cancers. The LNT-based system of protection employs easy-to-implement measures of radiation exposure. Such measures include the equivalent dose (a biological-damage-potential-weighted measure) and the effective dose (equivalent dose multiplied by a tissue-specific relative sensitivity factor for stochastic effects). These weighted doses have special units such as the sievert (Sv) and millisievert (mSv, one thousandth of a sievert). Radiation-induced harm is controlled via enforcing exposure limits expressed as effective dose. Expected cancer cases can be easily computed based on the summed effective dose (person-sievert) for an irradiated group or population. Yet the current system of radiation protection needs revision because radiation-induced natural protection (hormesis) has been neglected. A novel, nonlinear, hormetic relative risk model for radiation-induced cancers is discussed in the context of establishing new radiation exposure limits for nuclear workers and the public.
当前的人类辐射防护体系是基于线性无阈(LNT)风险评估范式的。受辐照的核工作人员和公众感知到的危害主要反映在计算出的假设性癌症增加上。基于 LNT 的防护体系采用易于实施的辐射暴露措施。这些措施包括当量剂量(一种对生物损伤潜力进行加权的衡量标准)和有效剂量(当量剂量乘以随机性效应的组织特异性相对敏感系数)。这些加权剂量具有特殊的单位,如希沃特(Sv)和毫希沃特(mSv,希沃特的千分之一)。通过实施有效剂量表示的暴露限制来控制辐射诱导的危害。可以根据受辐照组或人群的有效剂量总和(人希沃特)轻松计算预期的癌症病例。然而,由于忽视了辐射诱导的自然保护(兴奋效应),当前的辐射防护体系需要修订。本文讨论了一种新颖的、非线性的兴奋效应相对风险模型,以确定新的核工作人员和公众的辐射暴露限值。