Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland.
J Chem Phys. 2012 Aug 14;137(6):064501. doi: 10.1063/1.4739750.
One of the most intriguing phenomena in glass forming systems is the dynamic crossover (T(B)), occurring well above the glass temperature (T(g)). So far, it was estimated mainly from the linearized derivative analysis of the primary relaxation time τ(T) or viscosity η(T) experimental data, originally proposed by Stickel et al. [J. Chem. Phys. 104, 2043 (1996); J. Chem. Phys. 107, 1086 (1997)]. However, this formal procedure is based on the general validity of the Vogel-Fulcher-Tammann equation, which has been strongly questioned recently [T. Hecksher et al. Nature Phys. 4, 737 (2008); P. Lunkenheimer et al. Phys. Rev. E 81, 051504 (2010); J. C. Martinez-Garcia et al. J. Chem. Phys. 134, 024512 (2011)]. We present a qualitatively new way to identify the dynamic crossover based on the apparent enthalpy space (H(a)(') = dlnτ/d(1/T)) analysis via a new plot lnH(a)(') vs. 1∕T supported by the Savitzky-Golay filtering procedure for getting an insight into the noise-distorted high order derivatives. It is shown that depending on the ratio between the "virtual" fragility in the high temperature dynamic domain (m(high)) and the "real" fragility at T(g) (the low temperature dynamic domain, m = m(low)) glass formers can be splitted into two groups related to f < 1 and f > 1, (f = m(high)∕m(low)). The link of this phenomenon to the ratio between the apparent enthalpy and activation energy as well as the behavior of the configurational entropy is indicated.
在玻璃形成系统中,最有趣的现象之一是动态交叉(T(B)),它发生在玻璃化温度(T(g))以上。到目前为止,它主要是通过对原始松弛时间τ(T)或粘度η(T)实验数据的线性化导数分析来估计的,这最初是由 Stickel 等人提出的[J. Chem. Phys. 104, 2043 (1996); J. Chem. Phys. 107, 1086 (1997)]。然而,这种正式的程序是基于 Vogel-Fulcher-Tammann 方程的普遍有效性,最近这一方程受到了强烈质疑[T. Hecksher 等人,Nature Phys. 4, 737 (2008); P. Lunkenheimer 等人,Phys. Rev. E 81, 051504 (2010); J. C. Martinez-Garcia 等人,J. Chem. Phys. 134, 024512 (2011)]。我们提出了一种基于表观焓空间(H(a)(') = dlnτ/d(1/T))分析的新方法,通过新的图 lnH(a)(') vs. 1∕T 来识别动态交叉,该图得到了 Savitzky-Golay 滤波程序的支持,以深入了解噪声失真的高阶导数。结果表明,根据高温动态域中“虚拟”脆性(m(high))与低温动态域(玻璃形成剂的 m(low))中“真实”脆性的比值,玻璃形成剂可以分为与 f < 1 和 f > 1 相关的两组(f = m(high)∕m(low))。表明这种现象与表观焓和激活能的比值以及构象熵的行为有关。