Suppr超能文献

小鼠体内的网格细胞

Grid cells in mice.

作者信息

Fyhn Marianne, Hafting Torkel, Witter Menno P, Moser Edvard I, Moser May-Britt

机构信息

Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University of Science and Technology, Trondheim, Norway.

出版信息

Hippocampus. 2008;18(12):1230-8. doi: 10.1002/hipo.20472.

Abstract

The medial entorhinal cortex (EC) is a part of the neural network for the representation of self-location in the rat. The key cell type of this system is the grid cell, whose multiple firing fields span the environment in a remarkably regular triangular or hexagonal pattern. The basic properties of grid cells and other cell types have been described, but the neuronal mechanisms responsible for the formation and maintenance of the place code remain elusive. These mechanisms can be investigated by genetic intervention strategies, where specific components of the entorhinal-hippocampal network are activated or silenced. Because of the common use of knockout mice for such targeted interventions, we asked if grid activity is expressed also in the mouse. Principal neurons in the superficial layers of mouse medial EC had stable grid fields similar to those of the rat. Neighboring grid cells shared a common spacing and orientation but had a different spatial phase, such that a small number of grid cells collectively represented all locations in the environment. The spacing of the grid increased with distance from the dorsal border of the medial EC. The lowest values for grid spacing, recorded at the dorsal end, were comparable to those of the rat, suggesting that grid fields do not scale up proportionally with body size. Grid cells were colocalized with head-direction cells and conjunctive place x head-direction cells, as in the rat. The demonstration of grid cells in mice prepares the ground for transgenic analyses of the entorhinal-hippocampal network.

摘要

内侧内嗅皮质(EC)是大鼠自我定位表征神经网络的一部分。该系统的关键细胞类型是网格细胞,其多个放电场以非常规则的三角形或六边形模式跨越环境。网格细胞和其他细胞类型的基本特性已被描述,但负责位置编码形成和维持的神经元机制仍然难以捉摸。这些机制可以通过基因干预策略进行研究,即激活或沉默内嗅 - 海马网络的特定组成部分。由于基因敲除小鼠常用于此类靶向干预,我们研究了小鼠是否也表现出网格活动。小鼠内侧EC浅层的主要神经元具有与大鼠相似的稳定网格场。相邻的网格细胞具有共同的间距和方向,但空间相位不同,因此少量网格细胞共同代表环境中的所有位置。网格间距随着与内侧EC背侧边界距离的增加而增大。在背侧末端记录到的最低网格间距值与大鼠相当,这表明网格场不会随身体大小成比例放大。与大鼠一样,网格细胞与头部方向细胞以及联合位置x头部方向细胞共定位。小鼠中网格细胞的证明为内嗅 - 海马网络的转基因分析奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验