Witola William Harold, El Bissati Kamal, Pessi Gabriella, Xie Changan, Roepe Paul D, Mamoun Choukri Ben
Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030.
Department of Chemistry and Department of Biochemistry, Cellular and Molecular Biology, Georgetown University, Washington, D. C. 20057.
J Biol Chem. 2008 Oct 10;283(41):27636-27643. doi: 10.1074/jbc.M804360200. Epub 2008 Aug 11.
Biochemical studies in the human malaria parasite, Plasmodium falciparum, indicated that in addition to the pathway for synthesis of phosphatidylcholine from choline (CDP-choline pathway), the parasite synthesizes this major membrane phospholipid via an alternative pathway named the serine-decarboxylase-phosphoethanolamine-methyltransferase (SDPM) pathway using host serine and ethanolamine as precursors. However, the role the transmethylation of phosphatidylethanolamine plays in the biosynthesis of phosphatidylcholine and the importance of the SDPM pathway in the parasite's growth and survival remain unknown. Here, we provide genetic evidence that knock-out of the PfPMT gene encoding the phosphoethanolamine methyltransferase enzyme completely abrogates the biosynthesis of phosphatidylcholine via the SDPM pathway. Lipid analysis in knock-out parasites revealed that unlike in mammalian and yeast cells, methylation of phosphatidylethanolamine to phosphatidylcholine does not occur in P. falciparum, thus making the SDPM and CDP-choline pathways the only routes for phosphatidylcholine biosynthesis in this organism. Interestingly, loss of PfPMT resulted in significant defects in parasite growth, multiplication, and viability, suggesting that this gene plays an important role in the pathogenesis of intraerythrocytic Plasmodium parasites.
对人类疟原虫恶性疟原虫的生化研究表明,除了由胆碱合成磷脂酰胆碱的途径(CDP-胆碱途径)外,该寄生虫还通过一条名为丝氨酸脱羧酶-磷酸乙醇胺甲基转移酶(SDPM)的替代途径,利用宿主丝氨酸和乙醇胺作为前体来合成这种主要的膜磷脂。然而,磷脂酰乙醇胺的甲基化在磷脂酰胆碱生物合成中的作用以及SDPM途径在寄生虫生长和存活中的重要性仍然未知。在此,我们提供了遗传学证据,即编码磷酸乙醇胺甲基转移酶的PfPMT基因敲除会完全消除通过SDPM途径进行的磷脂酰胆碱生物合成。对基因敲除寄生虫的脂质分析显示,与哺乳动物和酵母细胞不同,恶性疟原虫中不会发生磷脂酰乙醇胺甲基化生成磷脂酰胆碱的过程,因此SDPM和CDP-胆碱途径是该生物体中磷脂酰胆碱生物合成的唯一途径。有趣的是,PfPMT的缺失导致寄生虫生长、增殖和活力出现显著缺陷,表明该基因在红细胞内疟原虫的发病机制中起重要作用。