Suppr超能文献

微计算机断层扫描成像中骨分割的变异性:对定量形态计量分析的影响。

Variation in segmentation of bone from micro-CT imaging: implications for quantitative morphometric analysis.

作者信息

Parkinson I H, Badiei A, Fazzalari N L

机构信息

Bone and Joint Research Laboratory, Division of Tissue Pathology, Institute of Medical and Veterinary Science and Hanson Institute, Adelaide, Australia.

出版信息

Australas Phys Eng Sci Med. 2008 Jun;31(2):160-4. doi: 10.1007/BF03178592.

Abstract

Segmentation of bone in grey-level tomographs from micro-CT imaging is critical in determining the accuracy of morphometric analysis. The degree of variability in image segmentation between and within multiple operators will be quantified and compared with automated image segmentation. Three cubes of cancellous bone were cut from T12, L1, L3 and L4 human vertebral bodies (n=12). Micro-CT imaging was performed and a global threshold was determined by 3 operators independently and automatically using Otsu's algorithm. Bone volume, trabecular thickness, trabecular separation, trabecular number, trabecular bone pattern factor, structure model index and degree of anisotropy were calculated. Percent bias and percent random error were calculated between all operators and Otsu's method. For BV/TV, the maximum percent bias and percent random error were 22.0% and 11.3%, respectively, which constitutes differences in individual measurements between operators of up to 0.07. For Tb.Th, the maximum percent bias and percent random error were 13.1% and 6.4%, respectively, which constitutes differences in individual measurements between operators of up to 35 microm. These data highlight to users of micro-CT imaging that morphometric analysis is highly sensitive to operating parameters. The effect on measurements of cancellous bone structure of different operators can be greater than experimental differences, which can lead to erroneous interpretation of results.

摘要

在微计算机断层扫描(micro-CT)成像的灰度断层图像中,骨分割对于确定形态计量分析的准确性至关重要。将对多个操作人员之间以及操作人员内部图像分割的变异性程度进行量化,并与自动图像分割进行比较。从12个供体的T12、L1、L3和L4人体椎体上切取3个松质骨立方体。进行微CT成像,并由3名操作人员分别使用大津算法独立自动确定全局阈值。计算骨体积、小梁厚度、小梁间距、小梁数量、小梁骨模式因子、结构模型指数和各向异性程度。计算所有操作人员与大津方法之间的百分比偏差和百分比随机误差。对于骨体积分数(BV/TV),最大百分比偏差和百分比随机误差分别为22.0%和11.3%,这相当于操作人员之间个体测量值的差异高达0.07。对于小梁厚度(Tb.Th),最大百分比偏差和百分比随机误差分别为13.1%和6.4%,这相当于操作人员之间个体测量值的差异高达35微米。这些数据向微CT成像用户强调,形态计量分析对操作参数高度敏感。不同操作人员对松质骨结构测量的影响可能大于实验差异,这可能导致对结果的错误解读。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验