Suppr超能文献

用于从CT体数据中精确分割单个椎骨的局部先验。

Localized priors for the precise segmentation of individual vertebras from CT volume data.

作者信息

Shen Hong, Litvin Andrew, Alvino Christopher

机构信息

Siemens Corporate Research, Inc., 755 College Road East, Princeton, NJ 08540, USA.

出版信息

Med Image Comput Comput Assist Interv. 2008;11(Pt 1):367-75. doi: 10.1007/978-3-540-85988-8_44.

Abstract

We present algorithms for the automatic and precise segmentation of individual vertebras in CT Volume data. When a local surface evolution method such as the level set is applied to such a complex structure, global shape priors will not be sufficient to avoid the leakage and local minima problems, particularly if precise object boundary is desired. We propose a prior knowledge base that contains localized priors--a group of high-level features whose detection will augment the surface model and be the key to success. Base on this a set of context blockers are applied to prevent the leakages. Carefully designed initial surface when registered with the data helps avoid the local minimum problem. The results of segmentation well approximate the human delineated object boundaries. We also present the validation result of the segmentation of 150 vertebras.

摘要

我们提出了用于在CT体数据中自动且精确分割单个椎骨的算法。当将诸如水平集等局部表面演化方法应用于如此复杂的结构时,全局形状先验不足以避免泄漏和局部最小值问题,特别是在需要精确的物体边界时。我们提出了一个先验知识库,其中包含局部先验——一组高级特征,其检测将增强表面模型并成为成功的关键。基于此,应用了一组上下文阻挡器来防止泄漏。精心设计的初始表面与数据配准有助于避免局部最小值问题。分割结果很好地近似了人工描绘的物体边界。我们还展示了150个椎骨分割的验证结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验