Shen Hong, Litvin Andrew, Alvino Christopher
Siemens Corporate Research, Inc., 755 College Road East, Princeton, NJ 08540, USA.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):367-75. doi: 10.1007/978-3-540-85988-8_44.
We present algorithms for the automatic and precise segmentation of individual vertebras in CT Volume data. When a local surface evolution method such as the level set is applied to such a complex structure, global shape priors will not be sufficient to avoid the leakage and local minima problems, particularly if precise object boundary is desired. We propose a prior knowledge base that contains localized priors--a group of high-level features whose detection will augment the surface model and be the key to success. Base on this a set of context blockers are applied to prevent the leakages. Carefully designed initial surface when registered with the data helps avoid the local minimum problem. The results of segmentation well approximate the human delineated object boundaries. We also present the validation result of the segmentation of 150 vertebras.
我们提出了用于在CT体数据中自动且精确分割单个椎骨的算法。当将诸如水平集等局部表面演化方法应用于如此复杂的结构时,全局形状先验不足以避免泄漏和局部最小值问题,特别是在需要精确的物体边界时。我们提出了一个先验知识库,其中包含局部先验——一组高级特征,其检测将增强表面模型并成为成功的关键。基于此,应用了一组上下文阻挡器来防止泄漏。精心设计的初始表面与数据配准有助于避免局部最小值问题。分割结果很好地近似了人工描绘的物体边界。我们还展示了150个椎骨分割的验证结果。