Suppr超能文献

Proteoglycan alterations during developing experimental osteoarthritis in a novel hip joint model.

作者信息

Inerot S, Heinegård D, Olsson S E, Telhag H, Audell L

机构信息

Department of Physiological Chemistry, University of Lund, Sweden.

出版信息

J Orthop Res. 1991 Sep;9(5):658-73. doi: 10.1002/jor.1100090506.

Abstract

Degenerative hip joint disease was induced in dogs by extra-articular surgery that created a condition that mimics hip dysplasia. Decreased acetabular coverage of the femoral head gave altered mechanical load, with ensuing cartilage degeneration. For comparison, degenerative knee joint disease was induced in other dogs by transection of the anterior cruciate ligament of the knee. The femoral head articular cartilage showed macroscopic signs of degeneration within a month. No macroscopical changes of synovitis were present. Chemical analysis of cartilage samples showed loss of proteoglycans. Guanidine hydrochloride extracts of the cartilage contained proteoglycan fragments that could be separated by equilibrium density gradient centrifugation in cesium chloride. The data indicate that proteoglycans are fragmented by proteolytic cleavage and lost from the cartilage. The proteoglycans remaining in the tissue are smaller and have lost the ability to aggregate with hyaluronic acid. Similarly, in experimental knee joint osteoarthritis, the proteoglycan content of the cartilage decreased. The structural changes of those proteoglycans remaining were of a different nature, with no changes in proteoglycan size or aggregation properties, possibly indicating that both degradation and repair took place in the knee articular cartilage and/or that fragments were rapidly lost from the tissue. This may follow from different surgical procedures, only the one used for the hip joint being extra-articular, or from the different anatomy and physiology of the hip joint and the knee joint.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验