Reidenbach Matthew A, George Nicole, Koehl M A R
Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.
J Exp Biol. 2008 Sep;211(Pt 17):2849-58. doi: 10.1242/jeb.016394.
Many arthropod olfactory appendages bear arrays of hair-like chemosensory sensillae. Odor molecules in the fluid around the animal must reach the surfaces of those hairs to be sensed. We used the lateral flagellum of the olfactory antennule of the spiny lobster, Panulirus argus, as a system to study how the morphology, orientation, and motion of sensilla-bearing appendages affects the small-scale water flow within the hair array. We tested whether antennule flicking enables lobsters to take discrete odor samples by measuring flow fields through an aesthetasc array on a dynamically scaled physical model of a P. argus antennule. Particle image velocimetry revealed that the magnitude and duration of velocity through the aesthetasc array during the rapid flick downstroke is just enough to allow complete replacement of the fluid entrained within the hair array. The complex zig-zag arrangement of aesthetascs hairs, combined with their offset orientation along the antennule, generates flow velocities that are uniform along the length of the hairs. This increases fluid exchange during the flick and reduces the boundary layer thickness surrounding the hairs. The return stroke occurs at about a quarter the speed of the flick, but the velocity of the fluid between the aesthetascs is approximately 25 times slower. The retained fluid during the return stroke remains virtually unstirred and sufficient time occurs for odor molecules to diffuse to aesthetasc surfaces.
许多节肢动物的嗅觉附肢上都有一排排毛发状的化学感应感受器。动物周围流体中的气味分子必须到达这些毛发的表面才能被感知。我们以多刺龙虾(Panulirus argus)嗅觉小触角的外侧鞭毛为系统,研究带有感受器的附肢的形态、方向和运动如何影响毛发阵列内的小尺度水流。我们通过在多刺龙虾小触角的动态缩放物理模型上测量通过嗅觉感受器阵列的流场,来测试小触角轻弹是否能使龙虾采集离散的气味样本。粒子图像测速技术显示,在快速向下轻弹 stroke 期间,通过嗅觉感受器阵列的速度大小和持续时间刚好足以让毛发阵列内夹带的流体完全被替换。嗅觉感受器毛发的复杂之字形排列,加上它们沿小触角的偏移方向,产生了沿毛发长度均匀的流速。这增加了轻弹期间的流体交换,并减小了毛发周围的边界层厚度。回程的速度约为轻弹速度的四分之一,但嗅觉感受器之间流体的速度大约慢25倍。回程期间保留的流体几乎保持静止,有足够的时间让气味分子扩散到嗅觉感受器表面。