Goovaerts Pierre, Jacquez Geoffrey M, Greiling Dunrie
Chief Scientist, Biomedware, Inc. E-mail:
Geogr Anal. 2005 Apr;37(2):152-182. doi: 10.1111/j.1538-4632.2005.00634.x.
This paper presents a geostatistical methodology which accounts for spatially varying population size in the processing of cancer mortality data. The approach proceeds in two steps: (1) spatial patterns are first described and modeled using population-weighted semivariogram estimators, (2) spatial components corresponding to nested structures identified on semivariograms are then estimated and mapped using a variant of factorial kriging. The main benefit over traditional spatial smoothers is that the pattern of spatial variability (i.e. direction-dependent variability, range of correlation, presence of nested scales of variability) is directly incorporated into the computation of weights assigned to surrounding observations. Moreover, besides filtering the noise in the data the procedure allows the decomposition of the structured component into several spatial components (i.e. local versus regional variability) on the basis of semivariogram models. A simulation study demonstrates that maps of spatial components are closer to the underlying risk maps in terms of prediction errors and provide a better visualization of regional patterns than the original maps of mortality rates or the maps smoothed using weighted linear averages. The proposed approach also attenuates the underestimation of the magnitude of the correlation between various cancer rates resulting from noise attached to the data. This methodology has great potential to explore scale-dependent correlation between risks of developing cancers and to detect clusters at various spatial scales, which should lead to a more accurate representation of geographic variation in cancer risk, and ultimately to a better understanding of causative relationships.
本文提出了一种地质统计学方法,该方法在处理癌症死亡率数据时考虑了空间变化的人口规模。该方法分两步进行:(1)首先使用人口加权半变异函数估计量来描述和建模空间模式;(2)然后使用因子克里金法的一种变体来估计和绘制与在半变异函数上识别出的嵌套结构相对应的空间成分。与传统空间平滑方法相比,主要优势在于空间变异性模式(即方向依赖性变异性、相关范围、变异性嵌套尺度的存在)直接纳入分配给周围观测值的权重计算中。此外,除了过滤数据中的噪声外,该过程还允许基于半变异函数模型将结构化成分分解为几个空间成分(即局部与区域变异性)。一项模拟研究表明,就预测误差而言,空间成分图比原始死亡率图或使用加权线性平均值平滑后的图更接近潜在风险图,并且能更好地可视化区域模式。所提出的方法还减弱了因数据附加噪声导致的各种癌症发病率之间相关性大小的低估。这种方法在探索癌症发生风险之间的尺度依赖性相关性以及检测各种空间尺度上的聚集方面具有巨大潜力,这将导致更准确地表示癌症风险的地理变异,并最终更好地理解因果关系。