Suppr超能文献

使用析因克里金法和人口加权半变异函数探索癌症死亡率之间的尺度相关关系。

Exploring scale-dependent correlations between cancer mortality rates using factorial kriging and population-weighted semivariograms.

作者信息

Goovaerts Pierre, Jacquez Geoffrey M, Greiling Dunrie

机构信息

Chief Scientist, Biomedware, Inc. E-mail:

出版信息

Geogr Anal. 2005 Apr;37(2):152-182. doi: 10.1111/j.1538-4632.2005.00634.x.

Abstract

This paper presents a geostatistical methodology which accounts for spatially varying population size in the processing of cancer mortality data. The approach proceeds in two steps: (1) spatial patterns are first described and modeled using population-weighted semivariogram estimators, (2) spatial components corresponding to nested structures identified on semivariograms are then estimated and mapped using a variant of factorial kriging. The main benefit over traditional spatial smoothers is that the pattern of spatial variability (i.e. direction-dependent variability, range of correlation, presence of nested scales of variability) is directly incorporated into the computation of weights assigned to surrounding observations. Moreover, besides filtering the noise in the data the procedure allows the decomposition of the structured component into several spatial components (i.e. local versus regional variability) on the basis of semivariogram models. A simulation study demonstrates that maps of spatial components are closer to the underlying risk maps in terms of prediction errors and provide a better visualization of regional patterns than the original maps of mortality rates or the maps smoothed using weighted linear averages. The proposed approach also attenuates the underestimation of the magnitude of the correlation between various cancer rates resulting from noise attached to the data. This methodology has great potential to explore scale-dependent correlation between risks of developing cancers and to detect clusters at various spatial scales, which should lead to a more accurate representation of geographic variation in cancer risk, and ultimately to a better understanding of causative relationships.

摘要

本文提出了一种地质统计学方法,该方法在处理癌症死亡率数据时考虑了空间变化的人口规模。该方法分两步进行:(1)首先使用人口加权半变异函数估计量来描述和建模空间模式;(2)然后使用因子克里金法的一种变体来估计和绘制与在半变异函数上识别出的嵌套结构相对应的空间成分。与传统空间平滑方法相比,主要优势在于空间变异性模式(即方向依赖性变异性、相关范围、变异性嵌套尺度的存在)直接纳入分配给周围观测值的权重计算中。此外,除了过滤数据中的噪声外,该过程还允许基于半变异函数模型将结构化成分分解为几个空间成分(即局部与区域变异性)。一项模拟研究表明,就预测误差而言,空间成分图比原始死亡率图或使用加权线性平均值平滑后的图更接近潜在风险图,并且能更好地可视化区域模式。所提出的方法还减弱了因数据附加噪声导致的各种癌症发病率之间相关性大小的低估。这种方法在探索癌症发生风险之间的尺度依赖性相关性以及检测各种空间尺度上的聚集方面具有巨大潜力,这将导致更准确地表示癌症风险的地理变异,并最终更好地理解因果关系。

相似文献

引用本文的文献

本文引用的文献

2
Disease map reconstruction.疾病图谱重建
Stat Med. 2001 Jul 30;20(14):2183-204. doi: 10.1002/sim.933.
3
Evaluation of spatial filters to create smoothed maps of health data.用于创建健康数据平滑地图的空间滤波器评估。
Stat Med. 2000;19(17-18):2399-408. doi: 10.1002/1097-0258(20000915/30)19:17/18<2399::aid-sim577>3.0.co;2-r.
4
Disease mapping models: an empirical evaluation. Disease Mapping Collaborative Group.疾病映射模型:实证评估。疾病映射协作组
Stat Med. 2000;19(17-18):2217-41. doi: 10.1002/1097-0258(20000915/30)19:17/18<2217::aid-sim565>3.0.co;2-e.
5
Spatiotemporal analysis of environmental exposure-health effect associations.环境暴露与健康效应关联的时空分析。
J Expo Anal Environ Epidemiol. 2000 Mar-Apr;10(2):168-87. doi: 10.1038/sj.jea.7500077.
6
Exploring spatial patterns of mortality: the new atlas of United States mortality.探索死亡率的空间模式:美国死亡率新地图集
Stat Med. 1999 Dec 15;18(23):3211-20. doi: 10.1002/(sici)1097-0258(19991215)18:23<3211::aid-sim311>3.0.co;2-q.
7
Application of a weighted head-banging algorithm to mortality data maps.加权头部撞击算法在死亡率数据地图中的应用。
Stat Med. 1999 Dec 15;18(23):3201-9. doi: 10.1002/(sici)1097-0258(19991215)18:23<3201::aid-sim310>3.0.co;2-u.
9
A study of the breast cancer dynamics in North Carolina.
Soc Sci Med. 1997 Nov;45(10):1503-17. doi: 10.1016/s0277-9536(97)00080-4.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验