Demberg Thorsten, Boyer Jean D, Malkevich Nina, Patterson L Jean, Venzon David, Summers Ebonita L, Kalisz Irene, Kalyanaraman V S, Lee Eun Mi, Weiner David B, Robert-Guroff Marjorie
Vaccine Branch, National Cancer Institute, Bethesda, Maryland 208921, USA.
J Virol. 2008 Nov;82(21):10911-21. doi: 10.1128/JVI.01129-08. Epub 2008 Aug 27.
Previously, combination DNA/nonreplicating adenovirus (Ad)- or poxvirus-vectored vaccines have strongly protected against SHIV(89.6P), DNAs expressing cytokines have modulated immunity elicited by DNA vaccines, and replication-competent Ad-recombinant priming and protein boosting has strongly protected against simian immunodeficiency virus (SIV) challenge. Here we evaluated a vaccine strategy composed of these promising components. Seven rhesus macaques per group were primed twice with multigenic SIV plasmid DNA with or without interleukin-12 (IL-12) DNA or IL-15 DNA. After a multigenic replicating Ad-SIV immunization, all groups received two booster immunizations with SIV gp140 and SIV Nef protein. Four control macaques received control DNA plasmids, empty Ad vector, and adjuvant. All vaccine components were immunogenic, but the cytokine DNAs had little effect. Macaques that received IL-15-DNA exhibited higher peak anti-Nef titers, a more rapid anti-Nef anamnestic response postchallenge, and expanded CD8(CM) T cells 2 weeks postchallenge compared to the DNA-only group. Other immune responses were indistinguishable between groups. Overall, no protection against intrarectal challenge with SIV(mac251) was observed, although immunized non-Mamu-A01 macaques as a group exhibited a statistically significant 1-log decline in acute viremia compared to non-Mamu-A01 controls. Possible factors contributing to the poor outcome include administration of cytokine DNAs to sites different from the Ad recombinants (intramuscular and intratracheal, respectively), too few DNA priming immunizations, a suboptimal DNA delivery method, failure to ensure delivery of SIV and cytokine plasmids to the same cell, and instability and short half-life of the IL-15 component. Future experiments should address these issues to determine if this combination approach is able to control a virulent SIV challenge.
此前,DNA/非复制型腺病毒(Ad)或痘病毒载体联合疫苗已对猿猴免疫缺陷病毒(SHIV)(89.6P)提供了强有力的保护,表达细胞因子的DNA已调节了DNA疫苗引发的免疫反应,且具有复制能力的Ad重组体启动和蛋白质加强免疫已对猿猴免疫缺陷病毒(SIV)攻击提供了强有力的保护。在此,我们评估了一种由这些有前景的成分组成的疫苗策略。每组7只恒河猴用含或不含白细胞介素-12(IL-12)DNA或IL-15 DNA的多基因SIV质粒DNA进行两次启动免疫。在进行多基因复制型Ad-SIV免疫后,所有组均接受两次用SIV gp140和SIV Nef蛋白的加强免疫。4只对照猕猴接受对照DNA质粒、空Ad载体和佐剂。所有疫苗成分均具有免疫原性,但细胞因子DNA的作用很小。与仅接种DNA的组相比,接受IL-15-DNA的猕猴表现出更高的抗Nef峰值滴度、攻击后更快速的抗Nef回忆反应以及攻击后2周时CD8(CM)T细胞的扩增。各实验组之间的其他免疫反应无明显差异。总体而言,尽管作为一个组,免疫的非Mamu-A01猕猴与非Mamu-A01对照相比,急性病毒血症在统计学上有显著的1-log下降,但未观察到对SIV(mac251)经直肠攻击的保护作用。导致不良结果的可能因素包括将细胞因子DNA注射到与Ad重组体不同的部位(分别为肌肉内和气管内)、DNA启动免疫次数过少、DNA递送方法欠佳、未能确保将SIV和细胞因子质粒递送至同一细胞以及IL-15成分的不稳定性和半衰期短。未来的实验应解决这些问题,以确定这种联合方法是否能够控制毒性SIV攻击。