Takuno Shohei, Nishio Takeshi, Satta Yoko, Innan Hideki
Laboratory of Plant Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.
Genetics. 2008 Sep;180(1):517-31. doi: 10.1534/genetics.108.091918. Epub 2008 Aug 30.
Interlocus gene conversion is considered a crucial mechanism for generating novel combinations of polymorphisms in duplicated genes. The importance of gene conversion between duplicated genes has been recognized in the major histocompatibility complex and self-incompatibility genes, which are likely subject to diversifying selection. To theoretically understand the potential role of gene conversion in such situations, forward simulations are performed in various two-locus models. The results show that gene conversion could significantly increase the number of haplotypes when diversifying selection works on both loci. We find that the tract length of gene conversion is an important factor to determine the efficacy of gene conversion: shorter tract lengths can more effectively generate novel haplotypes given the gene conversion rate per site is the same. Similar results are also obtained when one of the duplicated genes is assumed to be a pseudogene. It is suggested that a duplicated gene, even after being silenced, will contribute to increasing the variability in the other locus through gene conversion. Consequently, the fixation probability and longevity of duplicated genes increase under the presence of gene conversion. On the basis of these findings, we propose a new scenario for the preservation of a duplicated gene: when the original donor gene is under diversifying selection, a duplicated copy can be preserved by gene conversion even after it is pseudogenized.
基因座间基因转换被认为是在重复基因中产生多态性新组合的关键机制。重复基因间基因转换的重要性在主要组织相容性复合体和自交不亲和基因中已得到认可,这些基因可能受到多样化选择。为了从理论上理解基因转换在这种情况下的潜在作用,在各种双基因座模型中进行了正向模拟。结果表明,当两个基因座都受到多样化选择时,基因转换可显著增加单倍型的数量。我们发现基因转换的片段长度是决定基因转换效率的一个重要因素:在每个位点的基因转换率相同的情况下,较短的片段长度能更有效地产生新的单倍型。当假设其中一个重复基因是假基因时,也能得到类似的结果。这表明一个重复基因即使在沉默后,也会通过基因转换有助于增加另一个基因座的变异性。因此,在存在基因转换的情况下,重复基因的固定概率和寿命会增加。基于这些发现,我们提出了一种关于重复基因保存的新设想:当原始供体基因受到多样化选择时,一个重复拷贝即使在假基因化后也可通过基因转换得以保存。