Suppr超能文献

当协变量为非随机缺失时提高完全病例分析的效率。

Improving upon the efficiency of complete case analysis when covariates are MNAR.

作者信息

Bartlett Jonathan W, Carpenter James R, Tilling Kate, Vansteelandt Stijn

机构信息

Centre for Statistical Methodology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK

Centre for Statistical Methodology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK and MRC Clinical Trial Trials Unit, Kingsway, London WC2B 6NH, UK.

出版信息

Biostatistics. 2014 Oct;15(4):719-30. doi: 10.1093/biostatistics/kxu023. Epub 2014 Jun 6.

Abstract

Missing values in covariates of regression models are a pervasive problem in empirical research. Popular approaches for analyzing partially observed datasets include complete case analysis (CCA), multiple imputation (MI), and inverse probability weighting (IPW). In the case of missing covariate values, these methods (as typically implemented) are valid under different missingness assumptions. In particular, CCA is valid under missing not at random (MNAR) mechanisms in which missingness in a covariate depends on the value of that covariate, but is conditionally independent of outcome. In this paper, we argue that in some settings such an assumption is more plausible than the missing at random assumption underpinning most implementations of MI and IPW. When the former assumption holds, although CCA gives consistent estimates, it does not make use of all observed information. We therefore propose an augmented CCA approach which makes the same conditional independence assumption for missingness as CCA, but which improves efficiency through specification of an additional model for the probability of missingness, given the fully observed variables. The new method is evaluated using simulations and illustrated through application to data on reported alcohol consumption and blood pressure from the US National Health and Nutrition Examination Survey, in which data are likely MNAR independent of outcome.

摘要

回归模型协变量中的缺失值是实证研究中普遍存在的问题。分析部分观测数据集的常用方法包括完全病例分析(CCA)、多重填补(MI)和逆概率加权(IPW)。在协变量值缺失的情况下,这些方法(通常的实现方式)在不同的缺失性假设下是有效的。特别是,CCA在非随机缺失(MNAR)机制下是有效的,在这种机制中,协变量的缺失取决于该协变量的值,但与结果有条件地独立。在本文中,我们认为在某些情况下,这样的假设比支撑MI和IPW大多数实现方式的随机缺失假设更合理。当前者假设成立时,虽然CCA给出了一致的估计,但它没有利用所有观测到的信息。因此,我们提出了一种增强的CCA方法,该方法对缺失性做出与CCA相同的条件独立性假设,但通过为给定完全观测变量的缺失概率指定一个额外的模型来提高效率。使用模拟对新方法进行了评估,并通过应用于美国国家健康和营养检查调查中报告的酒精消费和血压数据进行了说明,在该数据中,数据可能是与结果无关的MNAR。

相似文献

8
A Bayesian Latent Variable Selection Model for Nonignorable Missingness.贝叶斯潜在变量选择模型在不可忽略缺失数据中的应用
Multivariate Behav Res. 2022 Mar-May;57(2-3):478-512. doi: 10.1080/00273171.2021.1874259. Epub 2021 Feb 2.

引用本文的文献

9
Understanding the Broader Impact of Stuttering: Suicidal Ideation.理解口吃的更广泛影响:自杀意念。
Am J Speech Lang Pathol. 2023 Sep 11;32(5):2087-2110. doi: 10.1044/2023_AJSLP-23-00007. Epub 2023 Jul 20.
10
Increasing efficiency of SVMp+ for handling missing values in healthcare prediction.提高SVMp+在医疗保健预测中处理缺失值的效率。
PLOS Digit Health. 2023 Jun 29;2(6):e0000281. doi: 10.1371/journal.pdig.0000281. eCollection 2023 Jun.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验