Suppr超能文献

使用抗微小RNA抑制剂逆转HIV-1潜伏状态。

Reversal of HIV-1 latency with anti-microRNA inhibitors.

作者信息

Zhang Hui

机构信息

Center for Human Virology, Division of Infectious Diseases, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.

出版信息

Int J Biochem Cell Biol. 2009 Mar;41(3):451-4. doi: 10.1016/j.biocel.2008.07.016. Epub 2008 Aug 8.

Abstract

Human immunodeficiency virus type 1 (HIV-1) latency is achieved when host cells contain integrated proviral DNA but do not produce viral particles. The virus remains in resting CD4 T-lymphocytes, evading host immune surveillance and antiviral drugs. When resting cells are activated, infectious viral particles are produced. Latency is critical for the survival of all HIV-1 strains in vivo. Recently, it has been reported that a cluster of cellular microRNAs (miRNAs) enriched specifically in resting CD4+ T-cells suppresses translation of most HIV-1-encoded proteins in the cytoplasm, sustaining HIV-1 escape from the host immune response. Complementary antisense miRNA inhibitors block the inhibitory effect of miRNAs and drive viral production from the resting T-lymphocytes without activating the cells. Therefore, inhibition of these HIV-1-specific cellular miRNAs is of great therapeutic significance for eliminating the HIV-1 reservoir in HIV-1-infected individuals receiving suppressive highly active antiretroviral therapy (HAART).

摘要

当宿主细胞含有整合的前病毒DNA但不产生病毒颗粒时,就会出现1型人类免疫缺陷病毒(HIV-1)潜伏。病毒保留在静止的CD4 T淋巴细胞中,逃避宿主免疫监视和抗病毒药物。当静止细胞被激活时,就会产生具有传染性的病毒颗粒。潜伏对于所有HIV-1毒株在体内的存活至关重要。最近,有报道称,一组在静止CD4+ T细胞中特异性富集的细胞微小RNA(miRNA)可抑制细胞质中大多数HIV-1编码蛋白的翻译,使HIV-1逃避宿主免疫反应。互补反义miRNA抑制剂可阻断miRNA的抑制作用,并在不激活细胞的情况下促使静止T淋巴细胞产生病毒。因此,抑制这些HIV-1特异性细胞miRNA对于清除接受抑制性高效抗逆转录病毒疗法(HAART)的HIV-1感染者体内的HIV-1储存库具有重大治疗意义。

相似文献

1
Reversal of HIV-1 latency with anti-microRNA inhibitors.
Int J Biochem Cell Biol. 2009 Mar;41(3):451-4. doi: 10.1016/j.biocel.2008.07.016. Epub 2008 Aug 8.
2
Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes.
Nat Med. 2007 Oct;13(10):1241-7. doi: 10.1038/nm1639. Epub 2007 Sep 30.
4
Establishment and Reversal of HIV-1 Latency in Naive and Central Memory CD4+ T Cells In Vitro.
J Virol. 2016 Aug 26;90(18):8059-73. doi: 10.1128/JVI.00553-16. Print 2016 Sep 15.
5
Differentiation into an Effector Memory Phenotype Potentiates HIV-1 Latency Reversal in CD4 T Cells.
J Virol. 2019 Nov 26;93(24). doi: 10.1128/JVI.00969-19. Print 2019 Dec 15.
6
Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells.
PLoS Pathog. 2006 Jul;2(7):e68. doi: 10.1371/journal.ppat.0020068.
7
Atlas of the HIV-1 Reservoir in Peripheral CD4 T Cells of Individuals on Successful Antiretroviral Therapy.
mBio. 2021 Dec 21;12(6):e0307821. doi: 10.1128/mBio.03078-21. Epub 2021 Nov 30.
8
HIV Latency Is Established Directly and Early in Both Resting and Activated Primary CD4 T Cells.
PLoS Pathog. 2015 Jun 11;11(6):e1004955. doi: 10.1371/journal.ppat.1004955. eCollection 2015 Jun.
10
Naf1 Regulates HIV-1 Latency by Suppressing Viral Promoter-Driven Gene Expression in Primary CD4+ T Cells.
J Virol. 2016 Dec 16;91(1). doi: 10.1128/JVI.01830-16. Print 2017 Jan 1.

引用本文的文献

2
HibeRNAtion: HIV-1 RNA Metabolism and Viral Latency.
Front Cell Infect Microbiol. 2022 Jun 14;12:855092. doi: 10.3389/fcimb.2022.855092. eCollection 2022.
3
An insight on promising strategies hoping to cure HIV-1 infection by targeting Rev protein-short review.
Pharmacol Rep. 2021 Oct;73(5):1265-1272. doi: 10.1007/s43440-021-00257-9. Epub 2021 Apr 11.
4
The Role of Macrophages in HIV-1 Persistence and Pathogenesis.
Front Microbiol. 2019 Dec 5;10:2828. doi: 10.3389/fmicb.2019.02828. eCollection 2019.
5
Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs.
Cell Mol Life Sci. 2019 Sep;76(18):3583-3600. doi: 10.1007/s00018-019-03156-8. Epub 2019 May 25.
6
Non-coding RNAs and retroviruses.
Retrovirology. 2018 Feb 9;15(1):20. doi: 10.1186/s12977-018-0403-8.
9
The emerging role of miRNAs in inflammatory bowel disease: a review.
Therap Adv Gastroenterol. 2015 Jan;8(1):4-22. doi: 10.1177/1756283X14547360.
10
HIV-1 latency in monocytes/macrophages.
Viruses. 2014 Apr 22;6(4):1837-60. doi: 10.3390/v6041837.

本文引用的文献

1
Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element.
Nucleic Acids Res. 2008 Apr;36(7):2353-65. doi: 10.1093/nar/gkn076. Epub 2008 Feb 24.
2
Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target.
Science. 2008 Feb 1;319(5863):627-30. doi: 10.1126/science.1149859.
3
Small non-coding RNAs, mammalian cells, and viruses: regulatory interactions?
Retrovirology. 2007 Oct 15;4:74. doi: 10.1186/1742-4690-4-74.
4
Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes.
Nat Med. 2007 Oct;13(10):1241-7. doi: 10.1038/nm1639. Epub 2007 Sep 30.
5
Mechanisms and optimization of in vivo delivery of lipophilic siRNAs.
Nat Biotechnol. 2007 Oct;25(10):1149-57. doi: 10.1038/nbt1339. Epub 2007 Sep 16.
7
Caenorhabditis elegans SID-2 is required for environmental RNA interference.
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10565-70. doi: 10.1073/pnas.0611282104. Epub 2007 Jun 11.
8
The regulation of genes and genomes by small RNAs.
Development. 2007 May;134(9):1635-41. doi: 10.1242/dev.002006. Epub 2007 Apr 4.
9
Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1.
Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4095-100. doi: 10.1073/pnas.0608491104. Epub 2007 Feb 28.
10
Suppression of microRNA-silencing pathway by HIV-1 during virus replication.
Science. 2007 Mar 16;315(5818):1579-82. doi: 10.1126/science.1136319. Epub 2007 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验