Eckmann Jean-Pierre, Procaccia Itamar
University of Geneva, 1211 Geneva 4, Switzerland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011503. doi: 10.1103/PhysRevE.78.011503. Epub 2008 Jul 18.
The aim of this paper is to discuss some basic notions regarding generic glass-forming systems composed of particles interacting via soft potentials. Excluding explicitly hard-core interaction, we discuss the so-called glass transition in which a supercooled amorphous state is formed, accompanied by a spectacular slowing down of relaxation to equilibrium, when the temperature is changed over a relatively small interval. Using the classical example of a 50-50 binary liquid of N particles with different interaction length scales, we show the following. (i) The system remains ergodic at all temperatures. (ii) The number of topologically distinct configurations can be computed, is temperature independent, and is exponential in N. (iii) Any two configurations in phase space can be connected using elementary moves whose number is polynomially bounded in N, showing that the graph of configurations has the small world property. (iv) The entropy of the system can be estimated at any temperature (or energy), and there is no Kauzmann crisis at any positive temperature. (v) The mechanism for the super-Arrhenius temperature dependence of the relaxation time is explained, connecting it to an entropic squeeze at the glass transition. (vi) There is no Vogel-Fulcher crisis at any finite temperature T>0 .
本文旨在讨论一些关于由通过软势相互作用的粒子组成的通用玻璃形成系统的基本概念。排除明确的硬核相互作用,我们讨论所谓的玻璃转变,即在温度在相对较小的区间内变化时,形成过冷非晶态,同时伴随着弛豫到平衡的显著减慢。使用具有不同相互作用长度尺度的(N)个粒子的(50 - 50)二元液体的经典例子,我们展示以下内容。(i) 系统在所有温度下都保持遍历性。(ii) 拓扑上不同构型的数量可以计算,与温度无关,并且在(N)中是指数级的。(iii) 相空间中的任何两个构型都可以使用其数量在(N)中是多项式有界的基本移动来连接,表明构型图具有小世界性质。(iv) 系统的熵可以在任何温度(或能量)下估计,并且在任何正温度下都不存在考兹曼危机。(v) 解释了弛豫时间的超阿仑尼乌斯温度依赖性的机制,将其与玻璃转变时的熵挤压联系起来。(vi) 在任何有限温度(T > 0)下都不存在沃格尔 - 富尔彻危机。