Suppr超能文献

时空性心脏交替变化的不确定性

Indeterminacy of spatiotemporal cardiac alternans.

作者信息

Zhao Xiaopeng

机构信息

Mechanical, Aerospace and Biomedical Engineering Department, University of Tennessee, Knoxville, Tennessee 37996, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011902. doi: 10.1103/PhysRevE.78.011902. Epub 2008 Jul 9.

Abstract

Cardiac alternans, a beat-to-beat alternation in action potential duration (at the cellular level) or in electrocardiogram morphology (at the whole heart level), is a marker of ventricular fibrillation, a fatal heart rhythm that kills hundreds of thousands of people in the United States each year. Investigating cardiac alternans may lead to a better understanding of the mechanisms of cardiac arrhythmias and eventually better algorithms for the prediction and prevention of such dreadful diseases. In paced cardiac tissue, alternans develops under increasingly shorter pacing period. Existing experimental and theoretical studies adopt the assumption that alternans in homogeneous cardiac tissue is exclusively determined by the pacing period. In contrast, we find that, when calcium-driven alternans develops in cardiac fibers, it may take different spatiotemporal patterns depending on the pacing history. Because there coexist multiple alternans solutions for a given pacing period, the alternans pattern on a fiber becomes unpredictable. Using numerical simulation and theoretical analysis, we show that the coexistence of multiple alternans patterns is induced by the interaction between electrotonic coupling and an instability in calcium cycling.

摘要

心脏交替现象,即在动作电位持续时间上(细胞水平)或心电图形态上(全心水平)逐搏交替,是心室颤动的一个标志,心室颤动是一种致命的心律,在美国每年导致数十万人死亡。研究心脏交替现象可能有助于更好地理解心律失常的机制,并最终开发出更好的算法来预测和预防这类可怕的疾病。在有起搏的心脏组织中,交替现象在越来越短的起搏周期下出现。现有的实验和理论研究都采用这样的假设,即均匀心脏组织中的交替现象完全由起搏周期决定。相比之下,我们发现,当心脏纤维中出现钙驱动的交替现象时,它可能会根据起搏历史呈现出不同的时空模式。因为对于给定的起搏周期存在多种交替现象解决方案,所以纤维上的交替现象模式变得不可预测。通过数值模拟和理论分析,我们表明多种交替现象模式的共存是由电紧张耦合与钙循环不稳定性之间的相互作用引起的。

相似文献

1
Indeterminacy of spatiotemporal cardiac alternans.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011902. doi: 10.1103/PhysRevE.78.011902. Epub 2008 Jul 9.
2
Control of electrical alternans in canine cardiac purkinje fibers.
Phys Rev Lett. 2006 Mar 17;96(10):104101. doi: 10.1103/PhysRevLett.96.104101.
3
Control of electrical alternans in simulations of paced myocardium using extended time-delay autosynchronization.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041917. doi: 10.1103/PhysRevE.76.041917. Epub 2007 Oct 25.
4
Amplitude equation approach to spatiotemporal dynamics of cardiac alternans.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 1):051911. doi: 10.1103/PhysRevE.76.051911. Epub 2007 Nov 12.
6
Dynamic origin of spatially discordant alternans in cardiac tissue.
Biophys J. 2007 Jan 15;92(2):448-60. doi: 10.1529/biophysj.106.091009. Epub 2006 Oct 27.
7
Spatiotemporal transition to conduction block in canine ventricle.
Circ Res. 2002 Feb 22;90(3):289-96. doi: 10.1161/hh0302.104723.
8
9
Control of action potential duration alternans in canine ventricular tissue.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1997-2000. doi: 10.1109/IEMBS.2010.5627828.
10
Spatially discordant alternans in cardiomyocyte monolayers.
Am J Physiol Heart Circ Physiol. 2008 Mar;294(3):H1417-25. doi: 10.1152/ajpheart.01233.2007. Epub 2008 Jan 25.

引用本文的文献

1
Stochastic coupled map model of subcellular calcium cycling in cardiac cells.
Chaos. 2019 Feb;29(2):023125. doi: 10.1063/1.5063462.
2
Stochastic Pacing Inhibits Spatially Discordant Cardiac Alternans.
Biophys J. 2017 Dec 5;113(11):2552-2572. doi: 10.1016/j.bpj.2017.10.001.
4
Spatiotemporal dynamics of calcium-driven cardiac alternans.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052707. doi: 10.1103/PhysRevE.89.052707. Epub 2014 May 14.
6
Nonlinear dynamics in cardiology.
Annu Rev Biomed Eng. 2012;14:179-203. doi: 10.1146/annurev-bioeng-071811-150106. Epub 2012 Apr 18.
7
Spatiotemporal intracellular calcium dynamics during cardiac alternans.
Chaos. 2009 Sep;19(3):037115. doi: 10.1063/1.3207835.

本文引用的文献

1
Amplitude equation approach to spatiotemporal dynamics of cardiac alternans.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 1):051911. doi: 10.1103/PhysRevE.76.051911. Epub 2007 Nov 12.
2
The chicken or the egg? Voltage and calcium dynamics in the heart.
Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2054-5. doi: 10.1152/ajpheart.00830.2007. Epub 2007 Jul 27.
3
Characterizing the contribution of voltage- and calcium-dependent coupling to action potential stability: implications for repolarization alternans.
Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2109-18. doi: 10.1152/ajpheart.00609.2007. Epub 2007 Jun 22.
4
Theory of action potential wave block at-a-distance in the heart.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Feb;75(2 Pt 1):021910. doi: 10.1103/PhysRevE.75.021910. Epub 2007 Feb 20.
6
Nonlinear dynamics of paced cardiac cells.
Ann N Y Acad Sci. 2006 Oct;1080:376-94. doi: 10.1196/annals.1380.028.x.
7
A tale of two dogs: analyzing two models of canine ventricular electrophysiology.
Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H43-55. doi: 10.1152/ajpheart.00955.2006. Epub 2006 Sep 22.
8
Pacing-induced heterogeneities in intracellular Ca2+ signaling, cardiac alternans, and ventricular arrhythmias in intact rat heart.
Circ Res. 2006 Sep 29;99(7):e65-73. doi: 10.1161/01.RES.0000244087.36230.bf. Epub 2006 Sep 7.
9
Spatially discordant alternans in cardiac tissue: role of calcium cycling.
Circ Res. 2006 Sep 1;99(5):520-7. doi: 10.1161/01.RES.0000240542.03986.e7. Epub 2006 Aug 10.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验