Suppr超能文献

多聚谷氨酰胺神经退行性疾病中错误折叠蛋白的细胞内降解

Intracellular degradation of misfolded proteins in polyglutamine neurodegenerative diseases.

作者信息

Li Xiang, Li He, Li Xiao-Jiang

机构信息

Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

出版信息

Brain Res Rev. 2008 Nov;59(1):245-52. doi: 10.1016/j.brainresrev.2008.08.003. Epub 2008 Aug 23.

Abstract

A number of neurodegenerative diseases, including Alzheimer's, Parkinson's, and polyglutamine diseases, are characterized by the age-dependent formation of intracellular protein aggregates and neurodegeneration. Although there is some debate surrounding the role of these aggregates in neurotoxicity, the formation of aggregates is known to reflect the accumulation of misfolded and toxic proteins. The degradation of misfolded proteins occurs mainly via the ubiquitin-proteasome and autophagy pathways. In neuronal cells, polyglutamine protein inclusions are present predominantly in the nucleus, which is not accessible to autophagy. It remains unclear how the ubiquitin-proteasomal and autophagy pathways remove misfolded proteins in the different subcellular regions of neurons, where disease proteins become misfolded and aggregated in an age-dependent manner. Here we discuss the key findings to date about the roles of the ubiquitin-proteasome system and autophagy in polyglutamine diseases. Understanding how these two pathways function to clear mutant polyglutamine proteins will further the development of effective treatments for polyglutamine and other neurodegenerative diseases.

摘要

包括阿尔茨海默病、帕金森病和多聚谷氨酰胺疾病在内的多种神经退行性疾病,其特征是细胞内蛋白质聚集体随年龄增长而形成以及神经退行性变。尽管围绕这些聚集体在神经毒性中的作用存在一些争议,但已知聚集体的形成反映了错误折叠和有毒蛋白质的积累。错误折叠蛋白质的降解主要通过泛素-蛋白酶体和自噬途径进行。在神经元细胞中,多聚谷氨酰胺蛋白包涵体主要存在于细胞核中,而自噬无法触及该区域。目前尚不清楚泛素-蛋白酶体和自噬途径如何在神经元的不同亚细胞区域清除错误折叠的蛋白质,在这些区域中疾病蛋白会以年龄依赖的方式发生错误折叠和聚集。在此,我们讨论迄今为止关于泛素-蛋白酶体系统和自噬在多聚谷氨酰胺疾病中的作用的关键发现。了解这两条途径如何发挥作用以清除突变的多聚谷氨酰胺蛋白,将推动多聚谷氨酰胺疾病和其他神经退行性疾病有效治疗方法的开发。

相似文献

1
Intracellular degradation of misfolded proteins in polyglutamine neurodegenerative diseases.
Brain Res Rev. 2008 Nov;59(1):245-52. doi: 10.1016/j.brainresrev.2008.08.003. Epub 2008 Aug 23.
2
Autophagy and polyglutamine diseases.
Prog Neurobiol. 2012 May;97(2):67-82. doi: 10.1016/j.pneurobio.2011.08.013. Epub 2011 Sep 10.
3
Inefficient degradation of truncated polyglutamine proteins by the proteasome.
EMBO J. 2004 Oct 27;23(21):4307-18. doi: 10.1038/sj.emboj.7600426. Epub 2004 Oct 7.
5
Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities.
Cell Death Differ. 2021 Feb;28(2):570-590. doi: 10.1038/s41418-020-00706-7. Epub 2021 Jan 7.
6
Role of molecular chaperones in neurodegenerative disorders.
Int J Hyperthermia. 2005 Aug;21(5):403-19. doi: 10.1080/02656730500041871.
9
Autophagy in polyglutamine disease: Imposing order on disorder or contributing to the chaos?
Mol Cell Neurosci. 2015 May;66(Pt A):53-61. doi: 10.1016/j.mcn.2015.03.010. Epub 2015 Mar 11.
10
Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications.
Curr Top Dev Biol. 2006;76:89-101. doi: 10.1016/S0070-2153(06)76003-3.

引用本文的文献

4
Cuprous oxide nanoparticles inhibit the growth of cervical carcinoma by inducing autophagy.
Oncotarget. 2017 May 15;8(37):61083-61092. doi: 10.18632/oncotarget.17854. eCollection 2017 Sep 22.
5
Translational effects and coding potential of an upstream open reading frame associated with DOPA Responsive Dystonia.
Biochim Biophys Acta Mol Basis Dis. 2017 Jun;1863(6):1171-1182. doi: 10.1016/j.bbadis.2017.03.024. Epub 2017 Mar 31.
7
Mutant Ataxin-1 Inhibits Neural Progenitor Cell Proliferation in SCA1.
Cerebellum. 2017 Apr;16(2):340-347. doi: 10.1007/s12311-016-0794-9.
8
Curcumin modulates cell death and is protective in Huntington's disease model.
Sci Rep. 2016 Jan 5;6:18736. doi: 10.1038/srep18736.
9
Heat shock protein 70 regulates degradation of the mumps virus phosphoprotein via the ubiquitin-proteasome pathway.
J Virol. 2015 Mar;89(6):3188-99. doi: 10.1128/JVI.03343-14. Epub 2014 Dec 31.
10
Structure prediction of polyglutamine disease proteins: comparison of methods.
BMC Bioinformatics. 2014;15 Suppl 7(Suppl 7):S11. doi: 10.1186/1471-2105-15-S7-S11. Epub 2014 May 28.

本文引用的文献

1
Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons.
EMBO J. 2008 Aug 6;27(15):2124-34. doi: 10.1038/emboj.2008.133. Epub 2008 Jul 10.
3
Impaired ubiquitin-proteasome system activity in the synapses of Huntington's disease mice.
J Cell Biol. 2008 Mar 24;180(6):1177-89. doi: 10.1083/jcb.200709080.
4
Proteasomes cleave at multiple sites within polyglutamine tracts: activation by PA28gamma(K188E).
J Biol Chem. 2008 May 9;283(19):12919-25. doi: 10.1074/jbc.M709347200. Epub 2008 Mar 13.
5
N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking.
J Neurosci. 2008 Mar 12;28(11):2783-92. doi: 10.1523/JNEUROSCI.0106-08.2008.
6
Ubiquitylation and cancer development.
Curr Cancer Drug Targets. 2008 Mar;8(2):118-23. doi: 10.2174/156800908783769300.
7
Autophagy fights disease through cellular self-digestion.
Nature. 2008 Feb 28;451(7182):1069-75. doi: 10.1038/nature06639.
8
Rapamycin inhibits polyglutamine aggregation independently of autophagy by reducing protein synthesis.
Mol Pharmacol. 2008 Apr;73(4):1052-63. doi: 10.1124/mol.107.043398. Epub 2008 Jan 16.
9
Autophagy in the pathogenesis of disease.
Cell. 2008 Jan 11;132(1):27-42. doi: 10.1016/j.cell.2007.12.018.
10
Small molecule regulators of autophagy identified by an image-based high-throughput screen.
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):19023-8. doi: 10.1073/pnas.0709695104. Epub 2007 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验