Suppr超能文献

G蛋白偶联受体的虚拟筛选:一种计算机辅助化学基因组学方法。

Virtual screening of GPCRs: an in silico chemogenomics approach.

作者信息

Jacob Laurent, Hoffmann Brice, Stoven Véronique, Vert Jean-Philippe

机构信息

Mines ParisTech, Centre for Computational Biology, 35 rue Saint-Honoré, F-77305, Fontainebleau, France.

出版信息

BMC Bioinformatics. 2008 Sep 6;9:363. doi: 10.1186/1471-2105-9-363.

Abstract

BACKGROUND

The G-protein coupled receptor (GPCR) superfamily is currently the largest class of therapeutic targets. In silico prediction of interactions between GPCRs and small molecules in the transmembrane ligand-binding site is therefore a crucial step in the drug discovery process, which remains a daunting task due to the difficulty to characterize the 3D structure of most GPCRs, and to the limited amount of known ligands for some members of the superfamily. Chemogenomics, which attempts to characterize interactions between all members of a target class and all small molecules simultaneously, has recently been proposed as an interesting alternative to traditional docking or ligand-based virtual screening strategies.

RESULTS

We show that interaction prediction in the chemogenomics framework outperforms state-of-the-art individual ligand-based methods in accuracy both for receptor with known ligands and without known ligands. This is done with no knowledge of the receptor 3D structure. In particular we are able to predict ligands of orphan GPCRs with an estimated accuracy of 78.1%.

CONCLUSION

We propose new methods for in silico chemogenomics and validate them on the virtual screening of GPCRs. The methods represent an extension of a recently proposed machine learning strategy, based on support vector machines (SVM), which provides a flexible framework to incorporate various information sources on the biological space of targets and on the chemical space of small molecules. We investigate the use of 2D and 3D descriptors for small molecules, and test a variety of descriptors for GPCRs. We show that incorporating information about the known hierarchical classification of the target family and about key residues in their inferred binding pockets significantly improves the prediction accuracy of our model.

摘要

背景

G蛋白偶联受体(GPCR)超家族目前是最大的一类治疗靶点。因此,在跨膜配体结合位点对GPCR与小分子之间的相互作用进行计算机预测是药物发现过程中的关键一步,由于难以确定大多数GPCR的三维结构,且该超家族某些成员的已知配体数量有限,这仍然是一项艰巨的任务。化学基因组学试图同时表征一个靶点类别的所有成员与所有小分子之间的相互作用,最近已被提出作为传统对接或基于配体的虚拟筛选策略的一种有趣替代方法。

结果

我们表明,在化学基因组学框架下的相互作用预测在准确性方面优于最先进的基于单个配体的方法,无论是对于有已知配体的受体还是没有已知配体的受体。这一过程无需了解受体的三维结构。特别是,我们能够以78.1%的估计准确率预测孤儿GPCR的配体。

结论

我们提出了用于计算机化学基因组学的新方法,并在GPCR的虚拟筛选中对其进行了验证。这些方法是最近提出的基于支持向量机(SVM)的机器学习策略的扩展,该策略提供了一个灵活的框架,可纳入关于靶点生物空间和小分子化学空间的各种信息源。我们研究了小分子的二维和三维描述符的使用,并测试了多种GPCR描述符。我们表明,纳入有关目标家族已知层次分类的信息以及其推断结合口袋中的关键残基信息,可显著提高我们模型的预测准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd5/2553090/382fb819d1db/1471-2105-9-363-1.jpg

相似文献

1
Virtual screening of GPCRs: an in silico chemogenomics approach.
BMC Bioinformatics. 2008 Sep 6;9:363. doi: 10.1186/1471-2105-9-363.
3
Computational Prediction of Compound-Protein Interactions for Orphan Targets Using CGBVS.
Molecules. 2021 Aug 24;26(17):5131. doi: 10.3390/molecules26175131.
4
A Structural Framework for GPCR Chemogenomics: What's In a Residue Number?
Methods Mol Biol. 2018;1705:73-113. doi: 10.1007/978-1-4939-7465-8_4.
6
Virtual Screening of Human Class-A GPCRs Using Ligand Profiles Built on Multiple Ligand-Receptor Interactions.
J Mol Biol. 2020 Aug 7;432(17):4872-4890. doi: 10.1016/j.jmb.2020.07.003. Epub 2020 Jul 9.
7
Protein-ligand interaction prediction: an improved chemogenomics approach.
Bioinformatics. 2008 Oct 1;24(19):2149-56. doi: 10.1093/bioinformatics/btn409. Epub 2008 Aug 1.
8
Molecular interaction fingerprint approaches for GPCR drug discovery.
Curr Opin Pharmacol. 2016 Oct;30:59-68. doi: 10.1016/j.coph.2016.07.007. Epub 2016 Jul 29.
9
Comparing Class A GPCRs to bitter taste receptors: Structural motifs, ligand interactions and agonist-to-antagonist ratios.
Methods Cell Biol. 2016;132:401-27. doi: 10.1016/bs.mcb.2015.10.005. Epub 2015 Dec 24.
10
Prediction of drug-target interaction networks from the integration of chemical and genomic spaces.
Bioinformatics. 2008 Jul 1;24(13):i232-40. doi: 10.1093/bioinformatics/btn162.

引用本文的文献

1
Drug-Target Interactions Prediction at Scale: The Komet Algorithm with the LCIdb Dataset.
J Chem Inf Model. 2024 Sep 23;64(18):6938-6956. doi: 10.1021/acs.jcim.4c00422. Epub 2024 Sep 5.
2
The Histone Deacetylase Family: Structural Features and Application of Combined Computational Methods.
Pharmaceuticals (Basel). 2024 May 10;17(5):620. doi: 10.3390/ph17050620.
3
Orphan G protein-coupled receptors: the ongoing search for a home.
Front Pharmacol. 2024 Feb 29;15:1349097. doi: 10.3389/fphar.2024.1349097. eCollection 2024.
4
Predicting Drug-Target Interactions Based on the Ensemble Models of Multiple Feature Pairs.
Int J Mol Sci. 2021 Jun 20;22(12):6598. doi: 10.3390/ijms22126598.
6
Multi-task generative topographic mapping in virtual screening.
J Comput Aided Mol Des. 2019 Mar;33(3):331-343. doi: 10.1007/s10822-019-00188-x. Epub 2019 Feb 9.
7
Efficient multi-task chemogenomics for drug specificity prediction.
PLoS One. 2018 Oct 4;13(10):e0204999. doi: 10.1371/journal.pone.0204999. eCollection 2018.
9
Target prediction utilising negative bioactivity data covering large chemical space.
J Cheminform. 2015 Oct 24;7:51. doi: 10.1186/s13321-015-0098-y. eCollection 2015.
10
Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel.
Bioinformatics. 2016 Jan 1;32(1):85-95. doi: 10.1093/bioinformatics/btv529. Epub 2015 Sep 8.

本文引用的文献

1
Protein-ligand interaction prediction: an improved chemogenomics approach.
Bioinformatics. 2008 Oct 1;24(19):2149-56. doi: 10.1093/bioinformatics/btn409. Epub 2008 Aug 1.
2
A crystal clear view of the beta2-adrenergic receptor.
Nat Biotechnol. 2008 Feb;26(2):189-91. doi: 10.1038/nbt0208-189.
4
Efficient peptide-MHC-I binding prediction for alleles with few known binders.
Bioinformatics. 2008 Feb 1;24(3):358-66. doi: 10.1093/bioinformatics/btm611. Epub 2007 Dec 14.
5
High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor.
Science. 2007 Nov 23;318(5854):1258-65. doi: 10.1126/science.1150577. Epub 2007 Oct 25.
6
Critical role for the second extracellular loop in the binding of both orthosteric and allosteric G protein-coupled receptor ligands.
J Biol Chem. 2007 Aug 31;282(35):25677-86. doi: 10.1074/jbc.M702311200. Epub 2007 Jun 25.
7
GPCR structure-based virtual screening approach for CB2 antagonist search.
J Chem Inf Model. 2007 Jul-Aug;47(4):1626-37. doi: 10.1021/ci7000814. Epub 2007 Jun 20.
8
Chemogenomic approaches to rational drug design.
Br J Pharmacol. 2007 Sep;152(1):38-52. doi: 10.1038/sj.bjp.0707307. Epub 2007 May 29.
9
Chemogenomic approaches to drug discovery: similar receptors bind similar ligands.
Br J Pharmacol. 2007 Sep;152(1):5-7. doi: 10.1038/sj.bjp.0707308. Epub 2007 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验