Abásolo D, Escudero J, Hornero R, Gómez C, Espino P
Biomedical Engineering Group, ETS Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain.
Med Biol Eng Comput. 2008 Oct;46(10):1019-28. doi: 10.1007/s11517-008-0392-1. Epub 2008 Sep 11.
We analysed the electroencephalogram (EEG) from Alzheimer's disease (AD) patients with two nonlinear methods: approximate entropy (ApEn) and auto mutual information (AMI). ApEn quantifies regularity in data, while AMI detects linear and nonlinear dependencies in time series. EEGs from 11 AD patients and 11 age-matched controls were analysed. ApEn was significantly lower in AD patients at electrodes O1, O2, P3 and P4 (p < 0.01). The EEG AMI decreased more slowly with time delays in patients than in controls, with significant differences at electrodes T5, T6, O1, O2, P3 and P4 (p < 0.01). The strong correlation between results from both methods shows that the AMI rate of decrease can be used to estimate the regularity in time series. Our work suggests that nonlinear EEG analysis may contribute to increase the insight into brain dysfunction in AD, especially when different time scales are inspected, as is the case with AMI.
我们使用两种非线性方法对阿尔茨海默病(AD)患者的脑电图(EEG)进行了分析:近似熵(ApEn)和自互信息(AMI)。ApEn用于量化数据中的规律性,而AMI则检测时间序列中的线性和非线性依赖性。我们分析了11名AD患者和11名年龄匹配的对照者的脑电图。AD患者在电极O1、O2、P3和P4处的ApEn显著较低(p < 0.01)。与对照组相比,患者的脑电图AMI随时间延迟下降得更慢,在电极T5、T6、O1、O2、P3和P4处存在显著差异(p < 0.01)。两种方法的结果之间的强相关性表明,AMI的下降速率可用于估计时间序列中的规律性。我们的研究表明,非线性脑电图分析可能有助于加深对AD脑功能障碍的理解,特别是在检查不同时间尺度时,如AMI的情况。