Suppr超能文献

基于脑电图信号,采用庞加莱和熵方法检测阿尔茨海默病患者和轻度认知障碍患者。

Detection of Alzheimer and mild cognitive impairment patients by Poincare and Entropy methods based on electroencephalography signals.

作者信息

Aslan Umut, Akşahin Mehmet Feyzi

机构信息

Department of Electrical and Electronic Engineering, Gazi University, Ankara, Turkey.

出版信息

Biomed Eng Online. 2025 Apr 25;24(1):47. doi: 10.1186/s12938-025-01369-6.

Abstract

Alzheimer's disease (AD) is characterized by deficits in cognition, behavior, and intellectual functioning, and Mild Cognitive Impairment (MCI) refers to individuals whose cognitive impairment deviates from what is expected for their age but does not significantly interfere with daily activities. Because there is no treatment for AD, early prediction of AD can be helpful to reducing the progression of this disease. This study examines the Electroencephalography (EEG) signal of 3 distinct groups, including AD, MCI, and healthy individuals. Recognizing the non-stationary nature of EEG signals, two nonlinear approaches, Poincare and Entropy, are employed for meaningful feature extraction. Data should be segmented into epochs to extract features from EEG signals, and feature extraction approaches should be implemented for each one. The obtained features are given to machine learning algorithms to classify the subjects. Extensive experiments were conducted to analyze the features comprehensively. The results demonstrate that our proposed method surpasses previous studies in terms of accuracy, sensitivity, and specificity, indicating its effectiveness in classifying individuals with AD, MCI, and those without cognitive impairment.

摘要

阿尔茨海默病(AD)的特征是认知、行为和智力功能存在缺陷,而轻度认知障碍(MCI)是指认知障碍偏离其年龄预期但不会显著干扰日常活动的个体。由于目前尚无针对AD的治疗方法,对AD进行早期预测有助于减缓该疾病的进展。本研究检测了包括AD患者、MCI患者和健康个体在内的3个不同组别的脑电图(EEG)信号。鉴于EEG信号具有非平稳性,采用了庞加莱和熵这两种非线性方法进行有意义的特征提取。应将数据分割成时间段,以便从EEG信号中提取特征,并且应为每个时间段实施特征提取方法。将获得的特征输入机器学习算法以对受试者进行分类。进行了大量实验以全面分析这些特征。结果表明,我们提出的方法在准确性、敏感性和特异性方面优于先前的研究,表明其在对AD患者、MCI患者和无认知障碍者进行分类方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f79/12023449/3c7eaadb2f58/12938_2025_1369_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验