Suppr超能文献

采用近似熵方法分析帕金森病患者 EEG 活动的复杂性。

Analysis of complexity in the EEG activity of Parkinson's disease patients by means of approximate entropy.

机构信息

Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166, Rome, Italy.

Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy.

出版信息

Geroscience. 2022 Jun;44(3):1599-1607. doi: 10.1007/s11357-022-00552-0. Epub 2022 Mar 28.

Abstract

The objective of the present study is to explore the brain resting state differences between Parkinson's disease (PD) patients and age- and gender-matched healthy controls (elderly) in terms of complexity of electroencephalographic (EEG) signals. One non-linear approach to determine the complexity of EEG is the entropy. In this pilot study, 28 resting state EEGs were analyzed from 13 PD patients and 15 elderly subjects, applying approximate entropy (ApEn) analysis to EEGs in ten regions of interest (ROIs), five for each brain hemisphere (frontal, central, parietal, occipital, temporal). Results showed that PD patients presented statistically higher ApEn values than elderly confirming the hypothesis that PD is characterized by a remarkable modification of brain complexity and globally modifies the underlying organization of the brain. The higher-than-normal entropy of PD patients may describe a condition of low order and consequently low information flow due to an alteration of cortical functioning and processing of information. Understanding the dynamics of brain applying ApEn could be a useful tool to help in diagnosis, follow the progression of Parkinson's disease, and set up personalized rehabilitation programs.

摘要

本研究旨在探索帕金森病(PD)患者与年龄和性别匹配的健康对照组(老年人)在脑电图(EEG)信号复杂度方面的脑静息状态差异。确定 EEG 复杂度的一种非线性方法是熵。在这项初步研究中,对 13 名 PD 患者和 15 名老年受试者的 28 个静息态 EEG 进行了分析,对大脑五个区域(额、中、顶、枕、颞)的十个感兴趣区(ROI)的 EEG 进行了近似熵(ApEn)分析。结果表明,PD 患者的 ApEn 值明显高于老年人,证实了 PD 的特点是大脑复杂性显著改变,并全局改变了大脑的基本组织的假设。PD 患者高于正常的熵可能描述了一种低阶和低信息流的状态,这是由于皮质功能和信息处理的改变。应用 ApEn 来理解大脑的动力学可能是一种有用的工具,可以帮助诊断、跟踪帕金森病的进展,并制定个性化的康复计划。

相似文献

2
Exploring the complexity of EEG patterns in Parkinson's disease.探索帕金森病脑电图模式的复杂性。
Geroscience. 2025 Feb;47(1):837-849. doi: 10.1007/s11357-024-01277-y. Epub 2024 Jul 13.
3
Entropy modulation of electroencephalographic signals in physiological aging.脑电信号在生理老化中的熵调制。
Mech Ageing Dev. 2021 Jun;196:111472. doi: 10.1016/j.mad.2021.111472. Epub 2021 Mar 22.
9
Analysis of the Complexity Measures in the EEG of Schizophrenia Patients.精神分裂症患者脑电图中复杂性测度的分析
Int J Neural Syst. 2016 Mar;26(2):1650008. doi: 10.1142/S0129065716500088. Epub 2015 Dec 20.

引用本文的文献

2
Normalization and cross-entropy connectivity in brain disease classification.脑疾病分类中的归一化与交叉熵连通性
iScience. 2025 Mar 17;28(4):112226. doi: 10.1016/j.isci.2025.112226. eCollection 2025 Apr 18.
7
Exploring the complexity of EEG patterns in Parkinson's disease.探索帕金森病脑电图模式的复杂性。
Geroscience. 2025 Feb;47(1):837-849. doi: 10.1007/s11357-024-01277-y. Epub 2024 Jul 13.
8
Why so slow? Models of parkinsonian bradykinesia.为什么这么慢?帕金森氏运动徐缓模型。
Nat Rev Neurosci. 2024 Aug;25(8):573-586. doi: 10.1038/s41583-024-00830-0. Epub 2024 Jun 27.

本文引用的文献

4
Brain electroencephalographic segregation as a biomarker of learning.脑电分离作为学习的生物标志物。
Neural Netw. 2018 Oct;106:168-174. doi: 10.1016/j.neunet.2018.07.005. Epub 2018 Jul 19.
5
Entropy for the Complexity of Physiological Signal Dynamics.生理信号动力学复杂性的熵
Adv Exp Med Biol. 2017;1028:39-53. doi: 10.1007/978-981-10-6041-0_3.
10
Parkinson's disease.帕金森病。
Lancet. 2015 Aug 29;386(9996):896-912. doi: 10.1016/S0140-6736(14)61393-3. Epub 2015 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验