Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166, Rome, Italy.
Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy.
Geroscience. 2022 Jun;44(3):1599-1607. doi: 10.1007/s11357-022-00552-0. Epub 2022 Mar 28.
The objective of the present study is to explore the brain resting state differences between Parkinson's disease (PD) patients and age- and gender-matched healthy controls (elderly) in terms of complexity of electroencephalographic (EEG) signals. One non-linear approach to determine the complexity of EEG is the entropy. In this pilot study, 28 resting state EEGs were analyzed from 13 PD patients and 15 elderly subjects, applying approximate entropy (ApEn) analysis to EEGs in ten regions of interest (ROIs), five for each brain hemisphere (frontal, central, parietal, occipital, temporal). Results showed that PD patients presented statistically higher ApEn values than elderly confirming the hypothesis that PD is characterized by a remarkable modification of brain complexity and globally modifies the underlying organization of the brain. The higher-than-normal entropy of PD patients may describe a condition of low order and consequently low information flow due to an alteration of cortical functioning and processing of information. Understanding the dynamics of brain applying ApEn could be a useful tool to help in diagnosis, follow the progression of Parkinson's disease, and set up personalized rehabilitation programs.
本研究旨在探索帕金森病(PD)患者与年龄和性别匹配的健康对照组(老年人)在脑电图(EEG)信号复杂度方面的脑静息状态差异。确定 EEG 复杂度的一种非线性方法是熵。在这项初步研究中,对 13 名 PD 患者和 15 名老年受试者的 28 个静息态 EEG 进行了分析,对大脑五个区域(额、中、顶、枕、颞)的十个感兴趣区(ROI)的 EEG 进行了近似熵(ApEn)分析。结果表明,PD 患者的 ApEn 值明显高于老年人,证实了 PD 的特点是大脑复杂性显著改变,并全局改变了大脑的基本组织的假设。PD 患者高于正常的熵可能描述了一种低阶和低信息流的状态,这是由于皮质功能和信息处理的改变。应用 ApEn 来理解大脑的动力学可能是一种有用的工具,可以帮助诊断、跟踪帕金森病的进展,并制定个性化的康复计划。