Tolmachev Aleksey V, Monroe Matthew E, Purvine Samuel O, Moore Ronald J, Jaitly Navdeep, Adkins Joshua N, Anderson Gordon A, Smith Richard D
Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
Anal Chem. 2008 Nov 15;80(22):8514-25. doi: 10.1021/ac801376g. Epub 2008 Oct 15.
Hybrid FTMS instruments, such as the LTQ-FT and LTQ-Orbitrap, are capable of generating high duty cycle linear ion trap MS/MS data along with high resolution information without compromising the overall throughput of measurements. Combined with online LC separations, these instruments provide powerful capabilities for proteomics research. In the present work, we explore three alternative strategies for high throughput proteomics measurements using hybrid FTMS instruments. Our accurate mass and time tag (AMT tag) strategy enables identification of thousands of peptides in a single LC-FTMS analysis by comparing accurate molecular mass and LC elution time information from the analysis to a reference database. An alternative strategy considered here, termed accurate precursor mass filter (APMF), employs linear ion trap (low resolution) MS/MS identifications generated by an appropriate search engine, such as SEQUEST, refined with high resolution precursor ion data obtained from FTMS mass spectra. The APMF results can be additionally filtered using the LC elution time information from the AMT tag database, which constitutes a precursor mass and time filter (PMTF), the third approach implemented in this study. Both the APMF and the PMTF approaches are evaluated for coverage and confidence of peptide identifications and contrasted with the AMT tag strategy. The commonly used decoy database method and an alternative method based on mass accuracy histograms were used to reliably quantify identification confidence, revealing that both methods yielded similar results. Comparison of the AMT, APMF and PMTF approaches indicates that the AMT tag approach is preferential for studies desiring a highest achievable number of identified peptides. In contrast, the APMF approach does not require an AMT tag database and provides a moderate level of peptide coverage combined with acceptable confidence values of approximately 99%. The PMTF approach yielded a significantly better peptide identification confidence, >99.9%, that essentially excluded any false peptide identifications. Since AMT tag databases that exclude incorrect identifications are desirable, this study points to the value of a multipass APMF approach to generate AMT tag databases, which are then validated using the PMTF approach. The resulting compact, high quality databases can then be used for subsequent high-throughput, high peptide coverage AMT tag studies.
混合傅里叶变换质谱仪(FTMS),如LTQ-FT和LTQ-Orbitrap,能够在不影响整体测量通量的情况下,生成高占空比线性离子阱串联质谱(MS/MS)数据以及高分辨率信息。与在线液相色谱(LC)分离相结合,这些仪器为蛋白质组学研究提供了强大的功能。在本研究中,我们探索了三种使用混合FTMS仪器进行高通量蛋白质组学测量的替代策略。我们的精确质量和时间标签(AMT标签)策略通过将分析中的精确分子量和LC洗脱时间信息与参考数据库进行比较,能够在单次LC-FTMS分析中鉴定数千种肽段。这里考虑的另一种策略称为精确前体质量过滤(APMF),它采用由适当的搜索引擎(如SEQUEST)生成的线性离子阱(低分辨率)MS/MS鉴定结果,并利用从FTMS质谱图中获得的高分辨率前体离子数据进行优化。APMF结果可以使用来自AMT标签数据库的LC洗脱时间信息进行额外过滤,这构成了前体质量和时间过滤(PMTF),即本研究实施的第三种方法。对APMF和PMTF方法进行了肽段鉴定覆盖率和可信度的评估,并与AMT标签策略进行了对比。使用常用的诱饵数据库方法和基于质量精度直方图的替代方法来可靠地量化鉴定可信度,结果表明这两种方法产生了相似的结果。AMT、APMF和PMTF方法的比较表明,对于希望鉴定出尽可能多的肽段的研究,AMT标签方法更具优势。相比之下,APMF方法不需要AMT标签数据库,它能提供中等水平的肽段覆盖率,并结合约99%的可接受可信度值。PMTF方法产生了显著更高的肽段鉴定可信度,>99.9%,基本上排除了任何错误的肽段鉴定。由于排除错误鉴定的AMT标签数据库是理想的,本研究指出了采用多通道APMF方法生成AMT标签数据库的价值,然后使用PMTF方法对其进行验证。由此产生的紧凑、高质量数据库随后可用于后续的高通量、高肽段覆盖率的AMT标签研究。