Suppr超能文献

平滑肌细胞钙激活机制。

Smooth muscle cell calcium activation mechanisms.

作者信息

Berridge Michael J

机构信息

The Babraham Institute, Babraham, Cambridge CB22 4AT, UK.

出版信息

J Physiol. 2008 Nov 1;586(21):5047-61. doi: 10.1113/jphysiol.2008.160440. Epub 2008 Sep 11.

Abstract

Smooth muscle cell (SMC) contraction is controlled by the Ca2+ and Rho kinase signalling pathways. While the SMC Rho kinase system seems to be reasonably constant, there is enormous variation with regard to the mechanisms responsible for generating Ca2+ signals. One way of dealing with this diversity is to consider how this system has been adapted to control different SMC functions. Phasic SMCs (vas deferens, uterus and bladder) rely on membrane depolarization to drive Ca2+ influx across the plasma membrane. This depolarization can be induced by neurotransmitters or through the operation of a membrane oscillator. Many tonic SMCs (vascular, airway and corpus cavernosum) are driven by a cytosolic Ca2+ oscillator that generates periodic pulses of Ca2+. A similar oscillator is present in pacemaker cells such as the interstitial cells of Cajal (ICCs) and atypical SMCs that control other tonic SMCs (gastrointestinal, urethra, ureter). The changes in membrane potential induced by these cytosolic oscillators does not drive contraction directly but it functions to couple together individual oscillators to provide the synchronization that is a characteristic feature of many tonic SMCs.

摘要

平滑肌细胞(SMC)的收缩受钙离子(Ca2+)和Rho激酶信号通路控制。虽然SMC Rho激酶系统似乎相对稳定,但在产生Ca2+信号的机制方面存在巨大差异。处理这种多样性的一种方法是考虑该系统如何适应控制不同的SMC功能。阶段性SMC(输精管、子宫和膀胱)依靠膜去极化来驱动Ca2+通过质膜内流。这种去极化可由神经递质诱导或通过膜振荡器的运作来实现。许多紧张性SMC(血管、气道和海绵体)由一种胞质Ca2+振荡器驱动,该振荡器产生周期性的Ca2+脉冲。类似的振荡器存在于起搏细胞中,如 Cajal间质细胞(ICC)和控制其他紧张性SMC(胃肠道、尿道、输尿管)的非典型SMC。这些胞质振荡器引起的膜电位变化并不直接驱动收缩,而是起到将各个振荡器耦合在一起的作用,以提供许多紧张性SMC所特有的同步性。

相似文献

1
Smooth muscle cell calcium activation mechanisms.
J Physiol. 2008 Nov 1;586(21):5047-61. doi: 10.1113/jphysiol.2008.160440. Epub 2008 Sep 11.
2
Spontaneous electrical and Ca2+ signals in the mouse renal pelvis that drive pyeloureteric peristalsis.
Clin Exp Pharmacol Physiol. 2010 Apr;37(4):509-15. doi: 10.1111/j.1440-1681.2009.05226.x. Epub 2009 Jun 8.
3
Calcium events in smooth muscles and their interstitial cells; physiological roles of sparks.
J Physiol. 2006 Jan 1;570(Pt 1):5-11. doi: 10.1113/jphysiol.2005.095604. Epub 2005 Sep 29.
5
Genetic evidence for functional role of ryanodine receptor 1 in pulmonary artery smooth muscle cells.
Pflugers Arch. 2009 Feb;457(4):771-83. doi: 10.1007/s00424-008-0556-8. Epub 2008 Jul 29.
6
The origin of the skewed amplitude distribution of spontaneous excitatory junction potentials in poorly coupled smooth muscle cells.
Neuroscience. 2007 Mar 2;145(1):153-61. doi: 10.1016/j.neuroscience.2006.11.054. Epub 2007 Jan 5.
8
Complex regulation of store-operated Ca2+ entry pathway by PKC-epsilon in vascular SMCs.
Am J Physiol Cell Physiol. 2008 Jun;294(6):C1499-508. doi: 10.1152/ajpcell.00365.2007. Epub 2008 Apr 23.

引用本文的文献

2
Characteristics analysis of a single electromechanical arm driven by a functional neural circuit.
Cogn Neurodyn. 2025 Dec;19(1):65. doi: 10.1007/s11571-025-10218-0. Epub 2025 Apr 22.
4
Kir7.1 is the physiological target for hormones and steroids that regulate uteroplacental function.
Sci Adv. 2025 Mar 7;11(10):eadr5086. doi: 10.1126/sciadv.adr5086. Epub 2025 Mar 5.
5
The Role of Ion Channels in Pulmonary Hypertension: A Review.
Pulm Circ. 2025 Feb 16;15(1):e70050. doi: 10.1002/pul2.70050. eCollection 2025 Jan.
6
Channels, Transporters, and Receptors at Membrane Contact Sites.
Contact (Thousand Oaks). 2024 Dec 26;7:25152564241305593. doi: 10.1177/25152564241305593. eCollection 2024 Jan-Dec.
8
Modulatory Impact of Oxidative Stress on Action Potentials in Pathophysiological States: A Comprehensive Review.
Antioxidants (Basel). 2024 Sep 26;13(10):1172. doi: 10.3390/antiox13101172.
9
Harnessing the power of bioprinting for the development of next-generation models of thrombosis.
Bioact Mater. 2024 Sep 5;42:328-344. doi: 10.1016/j.bioactmat.2024.08.040. eCollection 2024 Dec.
10
Evolution of Bioelectric Membrane Potentials: Implications in Cancer Pathogenesis and Therapeutic Strategies.
J Membr Biol. 2024 Dec;257(5-6):281-305. doi: 10.1007/s00232-024-00323-2. Epub 2024 Aug 25.

本文引用的文献

1
Diverse properties of store-operated TRPC channels activated by protein kinase C in vascular myocytes.
J Physiol. 2008 May 15;586(10):2463-76. doi: 10.1113/jphysiol.2008.152157. Epub 2008 Mar 20.
2
Sex hormones and excitation-contraction coupling in the uterus: the effects of oestrous and hormones.
J Neuroendocrinol. 2008 Apr;20(4):451-61. doi: 10.1111/j.1365-2826.2008.01665.x. Epub 2008 Feb 8.
3
Regulation of airway smooth muscle cell contractility by Ca2+ signaling and sensitivity.
Proc Am Thorac Soc. 2008 Jan 1;5(1):23-31. doi: 10.1513/pats.200704-050VS.
4
Indirect coupling between Cav1.2 channels and ryanodine receptors to generate Ca2+ sparks in murine arterial smooth muscle cells.
J Physiol. 2007 Oct 1;584(Pt 1):205-19. doi: 10.1113/jphysiol.2007.138982. Epub 2007 Aug 2.
6
Properties of spontaneous Ca2+ transients recorded from interstitial cells of Cajal-like cells of the rabbit urethra in situ.
J Physiol. 2007 Sep 1;583(Pt 2):505-19. doi: 10.1113/jphysiol.2007.136697. Epub 2007 Jul 5.
7
Role of the calcium store in uterine contractility.
Semin Cell Dev Biol. 2007 Jun;18(3):315-20. doi: 10.1016/j.semcdb.2007.05.005. Epub 2007 May 18.
8
Insights into the uterus.
Exp Physiol. 2007 Jul;92(4):621-31. doi: 10.1113/expphysiol.2007.038125. Epub 2007 May 4.
9
Characterization of the molecular and electrophysiological properties of the T-type calcium channel in human myometrium.
J Physiol. 2007 Jun 15;581(Pt 3):915-26. doi: 10.1113/jphysiol.2007.132126. Epub 2007 Apr 19.
10
Myocytes, myometrium, and uterine contractions.
Ann N Y Acad Sci. 2007 Apr;1101:72-84. doi: 10.1196/annals.1389.038. Epub 2007 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验