Arthur Agnieszka, Zannettino Andrew, Gronthos Stan
Mesenchymal Stem Cell Group, Division of Haematology, Institute of Medical and Veterinary Science, Hanson Institute/University of Adelaide, Adelaide, South Australia, Australia.
J Cell Physiol. 2009 Feb;218(2):237-45. doi: 10.1002/jcp.21592.
Four decades after the first isolation and characterization of clonogenic bone marrow stromal cells or mesenchymal stem cells (MSC) in the laboratory of Dr. Alexander Friedenstien, the therapeutic application of their progeny following ex vivo expansion are only now starting to be realized in the clinic. The multipotency, paracrine effects, and immune-modulatory properties of MSC present them as an ideal stem cell candidate for tissue engineering and regenerative medicine. In recent years it has come to light that MSC encompass plasticity that extends beyond the conventional bone, adipose, cartilage, and other skeletal structures, and has expanded to the differentiation of liver, kidney, muscle, skin, neural, and cardiac cell lineages. This review will specifically focus on the skeletal regenerative capacity of bone marrow derived MSC alone or in combination with growth factors, biocompatible scaffolds, and following genetic modification.
在亚历山大·弗里登施泰因博士的实验室首次分离并鉴定克隆性骨髓基质细胞或间充质干细胞(MSC)40年后,其后代经体外扩增后的治疗应用如今才刚刚开始在临床上得以实现。MSC的多能性、旁分泌作用和免疫调节特性使其成为组织工程和再生医学的理想干细胞候选者。近年来已发现,MSC具有的可塑性超越了传统的骨骼、脂肪、软骨和其他骨骼结构,已扩展至肝脏、肾脏、肌肉、皮肤、神经和心脏细胞谱系的分化。本综述将特别聚焦于单独的骨髓来源MSC或与生长因子、生物相容性支架联合使用时,以及基因修饰后的骨骼再生能力。