Omichi K, Hase S, Ikenaka T
Department of Chemistry, Osaka University College of Science.
J Biochem. 1991 Mar;109(3):410-5. doi: 10.1093/oxfordjournals.jbchem.a123395.
The active site of human salivary alpha-amylase is composed of tandem subsites (S3, S2, S1, S1',S2', etc.) geometrically complementary to several glucose residues, and the glycosidic linkage of the substrate is split between S1 and S1'. As a matter of convenience, the subsites to which the non-reducing-end part (glycone) and the reducing-end part (aglycone) of the substrate being hydrolyzed are bound are named the glycone-binding site (S3, S2, S1) and the aglycone-binding site (S1', S2'), respectively. The features of the aglycone-binding site of human salivary alpha-amylase were examined by means of transglycosylation reaction using phenyl alpha-maltoside (GG phi: G-G-phi) and its derivatives (GAG phi: G-AG-phi, GCG phi: G-CG-phi, AGG phi: AG-G-phi, and CGG phi: CG-G-phi) in which one of the glucose residues (G) has been converted to 6-amino-6-deoxy-glucose (AG) or glucuronic acid (CG) residue as the acceptor. A fluorogenic derivative of maltotetraose, p-nitrophenyl O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1----4)-O-alpha-D -glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-alpha-D- glucopyranosyl-(1----4)-alpha-D-glucopyranoside (FG4P, FG-G-G-G-P), was used as the substrate. HSA catalyzed both hydrolysis of FG4P to FG3 (FG-G-G) and p-nitrophenyl alpha-glucoside (G-P) and transfer of the FG3 residue of FG4P to the acceptors. Transfer to GAG phi occurred more effectively than to GG phi. Transfers to GCG phi and CGG phi were less than to GG phi and very little transfer to AGG phi occurred.(ABSTRACT TRUNCATED AT 250 WORDS)