Suppr超能文献

绵羊左心室中的肌纤维角度分布不符合计算优化预测。

Myofiber angle distributions in the ovine left ventricle do not conform to computationally optimized predictions.

作者信息

Ennis Daniel B, Nguyen Tom C, Riboh Jonathan C, Wigström Lars, Harrington Katherine B, Daughters George T, Ingels Neil B, Miller D Craig

机构信息

Department of Cardiothoracic Surgery, 300 Pasteur Drive, Falk CVRB, Stanford University, Stanford, CA 94305-5488, USA.

出版信息

J Biomech. 2008 Nov 14;41(15):3219-24. doi: 10.1016/j.jbiomech.2008.08.007. Epub 2008 Sep 20.

Abstract

Recent computational models of optimized left ventricular (LV) myofiber geometry that minimize the spatial variance in sarcomere length, stress, and ATP consumption have predicted that a midwall myofiber angle of 20 degrees and transmural myofiber angle gradient of 140 degrees from epicardium to endocardium is a functionally optimal LV myofiber geometry. In order to test the extent to which actual fiber angle distributions conform to this prediction, we measured local myofiber angles at an average of nine transmural depths in each of 32 sites (4 short-axis levels, 8 circumferentially distributed blocks in each level) in five normal ovine LVs. We found: (1) a mean midwall myofiber angle of -7 degrees (SD 9), but with spatial heterogeneity (averaging 0 degrees in the posterolateral and anterolateral wall near the papillary muscles, and -9 degrees in all other regions); and (2) an average transmural gradient of 93 degrees (SD 21), but with spatial heterogeneity (averaging a low of 51 degrees in the basal posterior sector and a high of 130 degrees in the mid-equatorial anterolateral sector). We conclude that midwall myofiber angles and transmural myofiber angle gradients in the ovine heart are regionally non-uniform and differ significantly from the predictions of present-day computationally optimized LV myofiber models. Myofiber geometry in the ovine heart may differ from other species, but model assumptions also underlie the discrepancy between experimental and computational results. To test the predictive capability of the current computational model would we propose using an ovine specific LV geometry and comparing the computed myofiber orientations to those we report herein.

摘要

最近的优化左心室(LV)肌纤维几何结构的计算模型,该模型可使肌节长度、应力和ATP消耗的空间差异最小化,预测从心外膜到心内膜的中层肌纤维角度为20度,透壁肌纤维角度梯度为140度是功能上最优的LV肌纤维几何结构。为了测试实际纤维角度分布与该预测的符合程度,我们在五只正常绵羊左心室的32个部位(4个短轴水平,每个水平8个周向分布的块)的每个部位平均9个透壁深度处测量了局部肌纤维角度。我们发现:(1)平均中层肌纤维角度为-7度(标准差9),但存在空间异质性(在靠近乳头肌的后外侧壁和前外侧壁平均为0度,在所有其他区域为-9度);(2)平均透壁梯度为93度(标准差21),但存在空间异质性(在基底后段平均低至51度,在赤道中前外侧段平均高至130度)。我们得出结论,绵羊心脏中的中层肌纤维角度和透壁肌纤维角度梯度在区域上是不均匀的,并且与当前计算优化的LV肌纤维模型的预测有显著差异。绵羊心脏中的肌纤维几何结构可能与其他物种不同,但模型假设也是实验结果与计算结果之间差异的基础。为了测试当前计算模型的预测能力,我们建议使用绵羊特定的LV几何结构,并将计算出的肌纤维方向与我们在此报告的方向进行比较。

相似文献

1
Myofiber angle distributions in the ovine left ventricle do not conform to computationally optimized predictions.
J Biomech. 2008 Nov 14;41(15):3219-24. doi: 10.1016/j.jbiomech.2008.08.007. Epub 2008 Sep 20.
2
Heterogeneity of left ventricular wall thickening mechanisms.
Circulation. 2008 Aug 12;118(7):713-21. doi: 10.1161/CIRCULATIONAHA.107.744623. Epub 2008 Jul 28.
3
Contribution of myocardium overlying the anterolateral papillary muscle to left ventricular deformation.
Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H180-7. doi: 10.1152/ajpheart.00687.2011. Epub 2011 Oct 28.
4
Direct measurement of transmural laminar architecture in the anterolateral wall of the ovine left ventricle: new implications for wall thickening mechanics.
Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1324-30. doi: 10.1152/ajpheart.00813.2004. Epub 2004 Nov 18.
5
Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads.
Anat Rec A Discov Mol Cell Evol Biol. 2005 Mar;283(1):193-201. doi: 10.1002/ar.a.20133.
7
Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging.
Am J Physiol Heart Circ Physiol. 2002 Jul;283(1):H139-45. doi: 10.1152/ajpheart.00968.2001.
8
Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study.
J Biomech. 1992 Oct;25(10):1129-40. doi: 10.1016/0021-9290(92)90069-d.
9
Structure and torsion in the normal and situs inversus totalis cardiac left ventricle. II. Modeling cardiac adaptation to mechanical load.
Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H202-10. doi: 10.1152/ajpheart.00877.2007. Epub 2008 Apr 18.
10
Effect of fibre orientation on diastolic mechanics of human ventricle.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6523-6. doi: 10.1109/EMBC.2015.7319887.

引用本文的文献

1
Multiscale fiber remodeling in the infarcted left ventricle using a stress-based reorientation law.
Acta Biomater. 2024 Nov;189:337-350. doi: 10.1016/j.actbio.2024.09.049. Epub 2024 Oct 1.
2
The dependency of fetal left ventricular biomechanics function on myocardium helix angle configuration.
Biomech Model Mechanobiol. 2023 Apr;22(2):629-643. doi: 10.1007/s10237-022-01669-z. Epub 2022 Dec 22.
3
Multiscale simulations of left ventricular growth and remodeling.
Biophys Rev. 2021 Aug 25;13(5):729-746. doi: 10.1007/s12551-021-00826-5. eCollection 2021 Oct.
5
Myofiber strain in healthy humans using DENSE and cDTI.
Magn Reson Med. 2021 Jul;86(1):277-292. doi: 10.1002/mrm.28724. Epub 2021 Feb 22.
6
Estimating cardiomyofiber strain in vivo by solving a computational model.
Med Image Anal. 2021 Feb;68:101932. doi: 10.1016/j.media.2020.101932. Epub 2020 Dec 5.
7
Estimating Aggregate Cardiomyocyte Strain Using In Vivo Diffusion and Displacement Encoded MRI.
IEEE Trans Med Imaging. 2020 Mar;39(3):656-667. doi: 10.1109/TMI.2019.2933813. Epub 2019 Aug 8.
8
Automatic mapping of atrial fiber orientations for patient-specific modeling of cardiac electromechanics using image registration.
Int J Numer Method Biomed Eng. 2019 Jun;35(6):e3190. doi: 10.1002/cnm.3190. Epub 2019 Mar 14.
9
Effect of intra-myocardial Algisyl-LVR™ injectates on fibre structure in porcine heart failure.
J Mech Behav Biomed Mater. 2018 Nov;87:172-179. doi: 10.1016/j.jmbbm.2018.07.005. Epub 2018 Jul 10.

本文引用的文献

2
Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure.
Magn Reson Med. 2005 Oct;54(4):850-9. doi: 10.1002/mrm.20622.
3
Transmural sheet strains in the lateral wall of the ovine left ventricle.
Am J Physiol Heart Circ Physiol. 2005 Sep;289(3):H1234-41. doi: 10.1152/ajpheart.00119.2005. Epub 2005 May 6.
4
Helical myofiber orientation after myocardial infarction and left ventricular surgical restoration in sheep.
J Thorac Cardiovasc Surg. 2005 Feb;129(2):382-90. doi: 10.1016/j.jtcvs.2004.06.006.
5
Direct measurement of transmural laminar architecture in the anterolateral wall of the ovine left ventricle: new implications for wall thickening mechanics.
Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1324-30. doi: 10.1152/ajpheart.00813.2004. Epub 2004 Nov 18.
6
Time-dependent remodeling of transmural architecture underlying abnormal ventricular geometry in chronic volume overload heart failure.
Am J Physiol Heart Circ Physiol. 2004 Nov;287(5):H1994-2002. doi: 10.1152/ajpheart.00326.2004. Epub 2004 Jul 8.
7
Electromechanical model of cardiac resynchronization in the dilated failing heart with left bundle branch block.
J Electrocardiol. 2003;36 Suppl:57-61. doi: 10.1016/j.jelectrocard.2003.09.015.
8
Modeling the relation between cardiac pump function and myofiber mechanics.
J Biomech. 2003 May;36(5):731-6. doi: 10.1016/s0021-9290(02)00451-7.
9
Optimizing ventricular fibers: uniform strain or stress, but not ATP consumption, leads to high efficiency.
Am J Physiol Heart Circ Physiol. 2002 Sep;283(3):H1072-81. doi: 10.1152/ajpheart.00874.2001.
10
Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging.
Am J Physiol Heart Circ Physiol. 2002 Jul;283(1):H139-45. doi: 10.1152/ajpheart.00968.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验