Ennis Daniel B, Nguyen Tom C, Riboh Jonathan C, Wigström Lars, Harrington Katherine B, Daughters George T, Ingels Neil B, Miller D Craig
Department of Cardiothoracic Surgery, 300 Pasteur Drive, Falk CVRB, Stanford University, Stanford, CA 94305-5488, USA.
J Biomech. 2008 Nov 14;41(15):3219-24. doi: 10.1016/j.jbiomech.2008.08.007. Epub 2008 Sep 20.
Recent computational models of optimized left ventricular (LV) myofiber geometry that minimize the spatial variance in sarcomere length, stress, and ATP consumption have predicted that a midwall myofiber angle of 20 degrees and transmural myofiber angle gradient of 140 degrees from epicardium to endocardium is a functionally optimal LV myofiber geometry. In order to test the extent to which actual fiber angle distributions conform to this prediction, we measured local myofiber angles at an average of nine transmural depths in each of 32 sites (4 short-axis levels, 8 circumferentially distributed blocks in each level) in five normal ovine LVs. We found: (1) a mean midwall myofiber angle of -7 degrees (SD 9), but with spatial heterogeneity (averaging 0 degrees in the posterolateral and anterolateral wall near the papillary muscles, and -9 degrees in all other regions); and (2) an average transmural gradient of 93 degrees (SD 21), but with spatial heterogeneity (averaging a low of 51 degrees in the basal posterior sector and a high of 130 degrees in the mid-equatorial anterolateral sector). We conclude that midwall myofiber angles and transmural myofiber angle gradients in the ovine heart are regionally non-uniform and differ significantly from the predictions of present-day computationally optimized LV myofiber models. Myofiber geometry in the ovine heart may differ from other species, but model assumptions also underlie the discrepancy between experimental and computational results. To test the predictive capability of the current computational model would we propose using an ovine specific LV geometry and comparing the computed myofiber orientations to those we report herein.
最近的优化左心室(LV)肌纤维几何结构的计算模型,该模型可使肌节长度、应力和ATP消耗的空间差异最小化,预测从心外膜到心内膜的中层肌纤维角度为20度,透壁肌纤维角度梯度为140度是功能上最优的LV肌纤维几何结构。为了测试实际纤维角度分布与该预测的符合程度,我们在五只正常绵羊左心室的32个部位(4个短轴水平,每个水平8个周向分布的块)的每个部位平均9个透壁深度处测量了局部肌纤维角度。我们发现:(1)平均中层肌纤维角度为-7度(标准差9),但存在空间异质性(在靠近乳头肌的后外侧壁和前外侧壁平均为0度,在所有其他区域为-9度);(2)平均透壁梯度为93度(标准差21),但存在空间异质性(在基底后段平均低至51度,在赤道中前外侧段平均高至130度)。我们得出结论,绵羊心脏中的中层肌纤维角度和透壁肌纤维角度梯度在区域上是不均匀的,并且与当前计算优化的LV肌纤维模型的预测有显著差异。绵羊心脏中的肌纤维几何结构可能与其他物种不同,但模型假设也是实验结果与计算结果之间差异的基础。为了测试当前计算模型的预测能力,我们建议使用绵羊特定的LV几何结构,并将计算出的肌纤维方向与我们在此报告的方向进行比较。