Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany.
Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, 3460000, Chile.
Nat Commun. 2019 Jun 14;10(1):2659. doi: 10.1038/s41467-019-10599-x.
In contrast to the plasma membrane, the vacuole membrane has not yet been associated with electrical excitation of plants. Here, we show that mesophyll vacuoles from Arabidopsis sense and control the membrane potential essentially via the K-permeable TPC1 and TPK channels. Electrical stimuli elicit transient depolarization of the vacuole membrane that can last for seconds. Electrical excitability is suppressed by increased vacuolar Ca levels. In comparison to wild type, vacuoles from the fou2 mutant, harboring TPC1 channels insensitive to luminal Ca, can be excited fully by even weak electrical stimuli. The TPC1-loss-of-function mutant tpc1-2 does not respond to electrical stimulation at all, and the loss of TPK1/TPK3-mediated K transport affects the duration of TPC1-dependent membrane depolarization. In combination with mathematical modeling, these results show that the vacuolar K-conducting TPC1 and TPK1/TPK3 channels act in concert to provide for Ca- and voltage-induced electrical excitability to the central organelle of plant cells.
与质膜不同,液泡膜尚未与植物的电兴奋相关联。在这里,我们表明,拟南芥的叶肉液泡通过 K 通透性 TPC1 和 TPK 通道感知并控制膜电位。电刺激引发液泡膜的短暂去极化,其持续时间可达数秒。电兴奋性受增加的液泡 Ca 水平抑制。与野生型相比,具有对腔腔内 Ca 不敏感的 TPC1 通道的 fou2 突变体的液泡可以被甚至弱的电刺激完全激发。完全丧失 TPC1 功能的 tpc1-2 突变体根本不会对电刺激作出反应,而 TPK1/TPK3 介导的 K 转运的丧失会影响 TPC1 依赖性膜去极化的持续时间。结合数学建模,这些结果表明,液泡中的 K 导电 TPC1 和 TPK1/TPK3 通道协同作用,为植物细胞的中央细胞器提供 Ca 和电压诱导的电兴奋性。