Suppr超能文献

从单脉冲数据中无法确定基因表达中内在噪声的来源。

Nonidentifiability of the source of intrinsic noise in gene expression from single-burst data.

作者信息

Ingram Piers J, Stumpf Michael P H, Stark Jaroslav

机构信息

Department of Mathematics, Imperial College London, London, United Kingdom.

出版信息

PLoS Comput Biol. 2008 Oct;4(10):e1000192. doi: 10.1371/journal.pcbi.1000192. Epub 2008 Oct 10.

Abstract

Over the last few years, experimental data on the fluctuations in gene activity between individual cells and within the same cell over time have confirmed that gene expression is a "noisy" process. This variation is in part due to the small number of molecules taking part in some of the key reactions that are involved in gene expression. One of the consequences of this is that protein production often occurs in bursts, each due to a single promoter or transcription factor binding event. Recently, the distribution of the number of proteins produced in such bursts has been experimentally measured, offering a unique opportunity to study the relative importance of different sources of noise in gene expression. Here, we provide a derivation of the theoretical probability distribution of these bursts for a wide variety of different models of gene expression. We show that there is a good fit between our theoretical distribution and that obtained from two different published experimental datasets. We then prove that, irrespective of the details of the model, the burst size distribution is always geometric and hence determined by a single parameter. Many different combinations of the biochemical rates for the constituent reactions of both transcription and translation will therefore lead to the same experimentally observed burst size distribution. It is thus impossible to identify different sources of fluctuations purely from protein burst size data or to use such data to estimate all of the model parameters. We explore methods of inferring these values when additional types of experimental data are available.

摘要

在过去几年中,关于单个细胞之间以及同一细胞内基因活性随时间波动的实验数据证实,基因表达是一个“有噪声”的过程。这种变异部分归因于参与基因表达某些关键反应的分子数量较少。其结果之一是蛋白质产生往往是突发式的,每次突发都归因于单个启动子或转录因子结合事件。最近,已通过实验测量了此类突发中产生的蛋白质数量的分布,这为研究基因表达中不同噪声源的相对重要性提供了独特机会。在此,我们针对多种不同的基因表达模型,推导了这些突发的理论概率分布。我们表明,我们的理论分布与从两个不同的已发表实验数据集获得的分布拟合良好。然后我们证明,无论模型细节如何,突发大小分布始终是几何分布,因此由单个参数决定。转录和翻译的组成反应的生化速率的许多不同组合因此将导致相同的实验观察到的突发大小分布。因此,不可能仅从蛋白质突发大小数据中识别不同的波动源,也不可能使用此类数据来估计所有模型参数。我们探索了在有其他类型实验数据可用时推断这些值的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8abf/2538572/09a787efad3f/pcbi.1000192.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验