Sineshchekov Oleg A, Sasaki Jun, Phillips Brian J, Spudich John L
Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA.
Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16159-64. doi: 10.1073/pnas.0807486105. Epub 2008 Oct 13.
Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI-HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI-HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pK(a). These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition.
盐生盐杆菌中的感官视紫红质I(SRI)作为单量子吸引剂和双量子排斥剂趋光性的受体,通过其结合的转导蛋白HtrI传递光刺激。SRI - HtrI复合物中的信号反转突变将单量子反应从吸引剂反转到排斥剂。本文报道的快速分子内电荷移动表明,未光解的SRI - HtrI复合物存在于两种构象状态,它们的区别在于SRI光活性位点中的视黄叉席夫碱与内或外半通道的连接。在单量子光化学反应中,席夫碱连接到细胞质(CP)半通道的构象体产生吸引信号,而席夫碱连接到细胞外(EC)半通道的构象体产生排斥信号。在野生型复合物中,构象体平衡强烈倾向于席夫碱可接近CP的构象体。信号反转突变使平衡有利于席夫碱可接近EC的形式转变,而抑制突变使平衡向席夫碱可接近CP的形式转变,恢复野生型表型。我们的数据表明,行为反应的信号直接与连接开关的状态相关,而不是与质子移动方向或受体pK(a) 的变化相关。这些发现确定了视紫红质家族在运输和信号传导机制中的一个共同基本过程。此外,复合物的HtrI亚基中的突变对SRI席夫碱连接性的影响表明,这两种蛋白质紧密偶联形成一个经历协同构象转变的单一单元。