Wu Chaochao, Monroe Matthew E, Xu Zhe, Slysz Gordon W, Payne Samuel H, Rodland Karin D, Liu Tao, Smith Richard D
Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
J Am Soc Mass Spectrom. 2015 Dec;26(12):2002-8. doi: 10.1007/s13361-015-1169-z. Epub 2015 May 27.
The comprehensive MS analysis of the peptidome, the intracellular and intercellular products of protein degradation, has the potential to provide novel insights on endogenous proteolytic processing and its utility in disease diagnosis and prognosis. Along with the advances in MS instrumentation and related platforms, a plethora of proteomics data analysis tools have been applied for direct use in peptidomics; however, an evaluation of the currently available informatics pipelines for peptidomics data analysis has yet to be reported. In this study, we began by evaluating the results of several popular MS/MS database search engines, including MS-GF+, SEQUEST, and MS-Align+, for peptidomics data analysis, followed by identification and label-free quantification using the well-established accurate mass and time (AMT) tag and newly developed informed quantification (IQ) approaches, both based on direct LC-MS analysis. Our results demonstrated that MS-GF+ outperformed both SEQUEST and MS-Align+ in identifying peptidome peptides. Using a database established from MS-GF+ peptide identifications, both the AMT tag and IQ approaches provided significantly deeper peptidome coverage and less missing data for each individual data set than the MS/MS methods, while achieving robust label-free quantification. Besides having an excellent correlation with the AMT tag quantification results, IQ also provided slightly higher peptidome coverage. Taken together, we propose an optimized informatics pipeline combining MS-GF+ for initial database searching with IQ (or AMT tag) approaches for identification and label-free quantification for high-throughput, comprehensive, and quantitative peptidomics analysis. Graphical Abstract ᅟ.
对蛋白质降解的细胞内和细胞间产物——肽组进行全面的质谱分析,有可能为内源性蛋白水解加工及其在疾病诊断和预后中的应用提供新的见解。随着质谱仪器和相关平台的发展,大量蛋白质组学数据分析工具已被直接应用于肽组学;然而,目前尚未见对肽组学数据分析中现有信息学流程的评估报道。在本研究中,我们首先评估了几种流行的用于肽组学数据分析的串联质谱数据库搜索引擎的结果,包括MS-GF+、SEQUEST和MS-Align+,然后使用成熟的精确质量和时间(AMT)标签以及新开发的知情定量(IQ)方法进行鉴定和无标记定量,这两种方法均基于直接液相色谱-质谱分析。我们的结果表明,在鉴定肽组肽方面,MS-GF+优于SEQUEST和MS-Align+。使用从MS-GF+肽鉴定建立的数据库,与串联质谱方法相比,AMT标签和IQ方法在每个单独的数据集中都提供了显著更深的肽组覆盖范围和更少的缺失数据,同时实现了稳健的无标记定量。除了与AMT标签定量结果具有良好的相关性外,IQ还提供了略高的肽组覆盖范围。综上所述,我们提出了一种优化的信息学流程,将用于初始数据库搜索的MS-GF+与用于鉴定和无标记定量的IQ(或AMT标签)方法相结合,用于高通量、全面和定量的肽组学分析。图形摘要ᅟ。