Suppr超能文献

基于深紫外激发的有机和生物材料分类

Classification of organic and biological materials with deep ultraviolet excitation.

作者信息

Bhartia Rohit, Hug Willam F, Salas Everett C, Reid Ray D, Sijapati Kripa K, Tsapin Alexandre, Abbey William, Nealson Kenneth H, Lane Arthur L, Conrad Pamela G

机构信息

Planetary Science and Life Detection, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA.

出版信息

Appl Spectrosc. 2008 Oct;62(10):1070-7. doi: 10.1366/000370208786049123.

Abstract

We show that native fluorescence can be used to differentiate classes or groups of organic molecules and biological materials when excitation occurs at specific excitation wavelengths in the deep ultraviolet (UV) region. Native fluorescence excitation-emission maps (EEMs) of pure organic materials, microbiological samples, and environmental background materials were compared using excitation wavelengths between 200-400 nm with emission wavelengths from 270 to 500 nm. These samples included polycyclic aromatic hydrocarbons (PAHs), nitrogen- and sulfur-bearing organic heterocycles, bacterial spores, and bacterial vegetative whole cells (both Gram positive and Gram negative). Each sample was categorized into ten distinct groups based on fluorescence properties. Emission spectra at each of 40 excitation wavelengths were analyzed using principal component analysis (PCA). Optimum excitation wavelengths for differentiating groups were determined using two metrics. We show that deep UV excitation at 235 (+/-2) nm optimally separates all organic and biological groups within our dataset with >90% confidence. For the specific case of separation of bacterial spores from all other samples in the database, excitation at wavelengths less than 250 nm provides maximum separation with >6sigma confidence.

摘要

我们表明,当在深紫外(UV)区域的特定激发波长下发生激发时,天然荧光可用于区分有机分子和生物材料的类别或组。使用200 - 400 nm之间的激发波长和270至500 nm的发射波长,比较了纯有机材料、微生物样品和环境背景材料的天然荧光激发 - 发射图谱(EEMs)。这些样品包括多环芳烃(PAHs)、含氮和含硫的有机杂环、细菌孢子以及细菌营养体细胞(革兰氏阳性和革兰氏阴性)。根据荧光特性,每个样品被分为十个不同的组。使用主成分分析(PCA)分析了40个激发波长下的发射光谱。使用两个指标确定了区分组的最佳激发波长。我们表明,在235(±2)nm处的深紫外激发能以大于90%的置信度最佳地分离我们数据集中的所有有机和生物组。对于从数据库中的所有其他样品中分离细菌孢子的特定情况,在小于250 nm的波长下激发可提供大于6西格玛置信度的最大分离度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验