Cavalier-Smith T
Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
Int J Biochem Cell Biol. 2009 Feb;41(2):307-22. doi: 10.1016/j.biocel.2008.10.002. Epub 2008 Oct 18.
Cells are of only two kinds: bacteria, with DNA segregated by surface membrane motors, dating back approximately 3.5Gy; and eukaryotes, which evolved from bacteria, possibly as recently as 800-850My ago. The last common ancestor of eukaryotes was a sexual phagotrophic protozoan with mitochondria, one or two centrioles and cilia. Conversion of bacteria (=prokaryotes) into a eukaryote involved approximately 60 major innovations. Numerous contradictory ideas about eukaryogenesis fail to explain fundamental features of eukaryotic cell biology or conflict with phylogeny. Data are best explained by the intracellular coevolutionary theory, with three basic tenets: (1) the eukaryotic cytoskeleton and endomembrane system originated through cooperatively enabling the evolution of phagotrophy; (2) phagocytosis internalised DNA-membrane attachments, unavoidably disrupting bacterial division; recovery entailed the evolution of the nucleus and mitotic cycle; (3) the symbiogenetic origin of mitochondria immediately followed the perfection of phagotrophy and intracellular digestion, contributing greater energy efficiency and group II introns as precursors of spliceosomal introns. Eukaryotes plus their archaebacterial sisters form the clade neomura, which evolved from a radically modified derivative of an actinobacterial posibacterium that had replaced the ancestral eubacterial murein peptidoglycan by N-linked glycoproteins, radically modified its DNA-handling enzymes, and evolved cotranslational protein secretion, but not the isoprenoid-ether lipids of archaebacteria. I focus on this phylogenetic background and on explaining how in response to novel phagotrophic selective pressures and ensuing genome internalisation this prekaryote evolved efficient digestion of prey proteins by retrotranslocation and 26S proteasomes, then internal digestion by phagocytosis, lysosomes, and peroxisomes, and eukaryotic vesicle trafficking and intracellular compartmentation.
细菌,其DNA由表面膜马达分离,可追溯到约35亿年前;以及真核生物,它从细菌进化而来,可能距今只有8亿到8.5亿年前。真核生物的最后一个共同祖先是一种具有线粒体、一两个中心粒和纤毛的有性吞噬原生动物。细菌(=原核生物)向真核生物的转变涉及大约60项重大创新。关于真核生物起源的众多相互矛盾的观点未能解释真核细胞生物学的基本特征,或与系统发育相冲突。数据最好由细胞内共同进化理论来解释,该理论有三个基本信条:(1)真核细胞的细胞骨架和内膜系统起源于协同促进吞噬营养的进化;(2)吞噬作用将DNA-膜附着内化,不可避免地破坏细菌分裂;恢复需要细胞核和有丝分裂周期的进化;(3)线粒体的共生起源紧接着吞噬营养和细胞内消化的完善,带来了更高的能量效率以及作为剪接体内含子前体的II类内含子。真核生物及其古细菌姐妹形成了新壁总界,它从一种放线菌可能细菌的经过彻底改造的衍生物进化而来,这种衍生物用N-连接糖蛋白取代了祖先真细菌的胞壁质肽聚糖,彻底改造了其DNA处理酶,并进化出共翻译蛋白质分泌,但没有古细菌的类异戊二烯醚脂质。我将重点关注这一系统发育背景,并解释这种前原核生物如何响应新的吞噬营养选择压力以及随之而来的基因组内化,通过逆转位和26S蛋白酶体进化出对猎物蛋白质的高效消化,然后通过吞噬作用、溶酶体和过氧化物酶体进行细胞内消化,以及真核囊泡运输和细胞内区室化。