Suppr超能文献

使用多模态重症监护数据进行决策支持的稳健参数提取

Robust parameter extraction for decision support using multimodal intensive care data.

作者信息

Clifford G D, Long W J, Moody G B, Szolovits P

机构信息

Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2009 Jan 28;367(1887):411-29. doi: 10.1098/rsta.2008.0157.

Abstract

Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent exogenous perturbations by clinical staff. Relationships between different physiological parameters are usually nonlinear (except within restricted ranges), and the equipment used to measure the observables is often inherently error-prone and biased. The prior probabilities associated with an individual's genetics, pre-existing conditions, lifestyle and ongoing medical treatment all affect prediction and classification accuracy. In this paper, we describe some of the key problems and associated methods that hold promise for robust parameter extraction and data fusion for use in clinical decision support in the ICU.

摘要

随着技术和计算生物学的进步,重症监护病房(ICU)内的数字信息流持续增长。这些数据在整合和存档方面的最新进展为数据分析和临床反馈带来了新机遇。与ICU数据库相关的新问题也随之出现。ICU数据具有高维度、通常稀疏、异步且采样不规则的特点,同时还具有非平稳性、噪声大以及易受临床工作人员频繁外部干扰的特性。不同生理参数之间的关系通常是非线性的(在有限范围内除外),用于测量可观测值的设备往往本身就容易出错且存在偏差。与个体的遗传、既往病史、生活方式和正在进行的治疗相关的先验概率都会影响预测和分类的准确性。在本文中,我们描述了一些关键问题以及相关方法,这些方法有望实现用于ICU临床决策支持的稳健参数提取和数据融合。

相似文献

9
Advanced analytics for outcome prediction in intensive care units.重症监护病房中用于结局预测的高级分析方法。
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2520-2524. doi: 10.1109/EMBC.2016.7591243.
10
Integrating data, models, and reasoning in critical care.重症监护中的数据、模型与推理整合
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:350-3. doi: 10.1109/IEMBS.2006.259734.

引用本文的文献

5
Uncertainty in heart rate complexity metrics caused by R-peak perturbations.心率复杂度指标中 R 波峰扰动引起的不确定性。
Comput Biol Med. 2018 Dec 1;103:198-207. doi: 10.1016/j.compbiomed.2018.10.009. Epub 2018 Oct 17.
8
Machine Learning and Decision Support in Critical Care.重症监护中的机器学习与决策支持
Proc IEEE Inst Electr Electron Eng. 2016 Feb;104(2):444-466. doi: 10.1109/JPROC.2015.2501978. Epub 2016 Jan 25.
9
-Omic and Electronic Health Record Big Data Analytics for Precision Medicine.用于精准医学的组学与电子健康记录大数据分析
IEEE Trans Biomed Eng. 2017 Feb;64(2):263-273. doi: 10.1109/TBME.2016.2573285. Epub 2016 Oct 10.

本文引用的文献

2
Automated de-identification of free-text medical records.自由文本医疗记录的自动去识别化
BMC Med Inform Decis Mak. 2008 Jul 24;8:32. doi: 10.1186/1472-6947-8-32.
6
On Kalman filter solution of space-time interpolation.关于时空插值的卡尔曼滤波器解。
IEEE Trans Image Process. 2001;10(4):663-6. doi: 10.1109/83.913601.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验