Clifford G D, Long W J, Moody G B, Szolovits P
Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Philos Trans A Math Phys Eng Sci. 2009 Jan 28;367(1887):411-29. doi: 10.1098/rsta.2008.0157.
Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent exogenous perturbations by clinical staff. Relationships between different physiological parameters are usually nonlinear (except within restricted ranges), and the equipment used to measure the observables is often inherently error-prone and biased. The prior probabilities associated with an individual's genetics, pre-existing conditions, lifestyle and ongoing medical treatment all affect prediction and classification accuracy. In this paper, we describe some of the key problems and associated methods that hold promise for robust parameter extraction and data fusion for use in clinical decision support in the ICU.
随着技术和计算生物学的进步,重症监护病房(ICU)内的数字信息流持续增长。这些数据在整合和存档方面的最新进展为数据分析和临床反馈带来了新机遇。与ICU数据库相关的新问题也随之出现。ICU数据具有高维度、通常稀疏、异步且采样不规则的特点,同时还具有非平稳性、噪声大以及易受临床工作人员频繁外部干扰的特性。不同生理参数之间的关系通常是非线性的(在有限范围内除外),用于测量可观测值的设备往往本身就容易出错且存在偏差。与个体的遗传、既往病史、生活方式和正在进行的治疗相关的先验概率都会影响预测和分类的准确性。在本文中,我们描述了一些关键问题以及相关方法,这些方法有望实现用于ICU临床决策支持的稳健参数提取和数据融合。