Suppr超能文献

使用信号质量指标和卡尔曼滤波器从多个异步噪声源进行稳健的心率估计。

Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter.

作者信息

Li Q, Mark R G, Clifford G D

机构信息

Institute of Biomedical Engineering, School of Medicine, Shandong University, Shangdong, People's Republic of China.

出版信息

Physiol Meas. 2008 Jan;29(1):15-32. doi: 10.1088/0967-3334/29/1/002. Epub 2007 Dec 10.

Abstract

Physiological signals such as the electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often severely corrupted by noise, artifact and missing data, which lead to large errors in the estimation of the heart rate (HR) and ABP. A robust HR estimation method is described that compensates for these problems. The method is based upon the concept of fusing multiple signal quality indices (SQIs) and HR estimates derived from multiple electrocardiogram (ECG) leads and an invasive ABP waveform recorded from ICU patients. Physiological SQIs were obtained by analyzing the statistical characteristics of each waveform and their relationships to each other. HR estimates from the ECG and ABP are tracked with separate Kalman filters, using a modified update sequence based upon the individual SQIs. Data fusion of each HR estimate was then performed by weighting each estimate by the Kalman filters' SQI-modified innovations. This method was evaluated on over 6000 h of simultaneously acquired ECG and ABP from a 437 patient subset of ICU data by adding real ECG and realistic artificial ABP noise. The method provides an accurate HR estimate even in the presence of high levels of persistent noise and artifact, and during episodes of extreme bradycardia and tachycardia.

摘要

重症监护病房(ICU)中的生理信号,如心电图(ECG)和动脉血压(ABP),常常受到噪声、伪迹和数据缺失的严重干扰,这会导致心率(HR)和ABP估计出现较大误差。本文描述了一种能够补偿这些问题的稳健HR估计方法。该方法基于融合多个信号质量指标(SQI)以及从多个心电图(ECG)导联和ICU患者记录的有创ABP波形得出的HR估计值的概念。通过分析每个波形的统计特征及其相互关系来获得生理SQI。使用基于各个SQI的改进更新序列,通过单独的卡尔曼滤波器跟踪来自ECG和ABP的HR估计值。然后,通过卡尔曼滤波器的SQI修正创新对每个HR估计值进行加权,从而实现每个HR估计值的数据融合。通过添加真实的ECG和逼真的人工ABP噪声,对来自437例ICU患者子集的超过6000小时同时采集的ECG和ABP数据进行了该方法的评估。即使在存在高水平持续噪声和伪迹的情况下,以及在极端心动过缓和心动过速发作期间,该方法也能提供准确的HR估计值。

相似文献

5
Multimodal heart beat detection using signal quality indices.使用信号质量指标的多模态心跳检测
Physiol Meas. 2015 Aug;36(8):1665-77. doi: 10.1088/0967-3334/36/8/1665. Epub 2015 Jul 28.
7
Heart beat detection using a multimodal data coupling method.使用多模态数据耦合方法进行心跳检测。
Physiol Meas. 2015 Aug;36(8):1729-42. doi: 10.1088/0967-3334/36/8/1729. Epub 2015 Jul 28.

引用本文的文献

本文引用的文献

6
The principles of software QRS detection.软件QRS波检测的原理。
IEEE Eng Med Biol Mag. 2002 Jan-Feb;21(1):42-57. doi: 10.1109/51.993193.
10
Detection of artifacts in monitored trends in intensive care.重症监护中监测趋势下伪迹的检测。
Comput Methods Programs Biomed. 2000 Nov;63(3):203-9. doi: 10.1016/s0169-2607(00)00110-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验